On periodic groups of automorphisms of extremal groups
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 91-96
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a periodic group $\mathfrak G$ has an extremal normal divisor $\mathfrak N$ , determining a complete abelian factor group $\mathfrak G/\mathfrak N$ , then the center of the group $\mathfrak G$ contains a complete abelian subgroup $\mathfrak A$, satisfying the relation $\mathfrak G=\mathfrak{NA}$ and intersecting $\mathfrak N$ on a finite subgroup. It is also established with the aid of this proposition that every periodic group of automorphisms of an extremal group $\mathfrak G$ is a finite extension of a contained in it subgroup of inner automorphisms of the group $\mathfrak G$.
@article{MZM_1968_4_1_a10,
author = {S. N. Chernikov},
title = {On periodic groups of automorphisms of extremal groups},
journal = {Matemati\v{c}eskie zametki},
pages = {91--96},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/}
}
S. N. Chernikov. On periodic groups of automorphisms of extremal groups. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/