On periodic groups of automorphisms of extremal groups
Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a periodic group $\mathfrak G$ has an extremal normal divisor $\mathfrak N$ , determining a complete abelian factor group $\mathfrak G/\mathfrak N$ , then the center of the group $\mathfrak G$ contains a complete abelian subgroup $\mathfrak A$, satisfying the relation $\mathfrak G=\mathfrak{NA}$ and intersecting $\mathfrak N$ on a finite subgroup. It is also established with the aid of this proposition that every periodic group of automorphisms of an extremal group $\mathfrak G$ is a finite extension of a contained in it subgroup of inner automorphisms of the group $\mathfrak G$.
@article{MZM_1968_4_1_a10,
     author = {S. N. Chernikov},
     title = {On periodic groups of automorphisms of extremal groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/}
}
TY  - JOUR
AU  - S. N. Chernikov
TI  - On periodic groups of automorphisms of extremal groups
JO  - Matematičeskie zametki
PY  - 1968
SP  - 91
EP  - 96
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/
LA  - ru
ID  - MZM_1968_4_1_a10
ER  - 
%0 Journal Article
%A S. N. Chernikov
%T On periodic groups of automorphisms of extremal groups
%J Matematičeskie zametki
%D 1968
%P 91-96
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/
%G ru
%F MZM_1968_4_1_a10
S. N. Chernikov. On periodic groups of automorphisms of extremal groups. Matematičeskie zametki, Tome 4 (1968) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/MZM_1968_4_1_a10/