The generating elements of certain Volterra operators connected with third- and fourth-order differential operators
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 715-720
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions are established for $f(x)$ to be the generating function for the Volterra operator which is inverse to the Cauchy operator: $l[y]=y^{(n)}+p_2(x)y^{(n-2)}+\dots+p_n(x)y$, $y(0)=y'(0)=\dots=y^{(n-1)}(0)=0$ ($n=3,4$), when the coefficients $p_i(x)$ are not analytic.
@article{MZM_1968_3_6_a11,
author = {A. P. Khromov},
title = {The generating elements of certain {Volterra} operators connected with third- and fourth-order differential operators},
journal = {Matemati\v{c}eskie zametki},
pages = {715--720},
publisher = {mathdoc},
volume = {3},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/}
}
TY - JOUR AU - A. P. Khromov TI - The generating elements of certain Volterra operators connected with third- and fourth-order differential operators JO - Matematičeskie zametki PY - 1968 SP - 715 EP - 720 VL - 3 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/ LA - ru ID - MZM_1968_3_6_a11 ER -
A. P. Khromov. The generating elements of certain Volterra operators connected with third- and fourth-order differential operators. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 715-720. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/