The generating elements of certain Volterra operators connected with third- and fourth-order differential operators
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 715-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are established for $f(x)$ to be the generating function for the Volterra operator which is inverse to the Cauchy operator: $l[y]=y^{(n)}+p_2(x)y^{(n-2)}+\dots+p_n(x)y$, $y(0)=y'(0)=\dots=y^{(n-1)}(0)=0$ ($n=3,4$), when the coefficients $p_i(x)$ are not analytic.
@article{MZM_1968_3_6_a11,
     author = {A. P. Khromov},
     title = {The generating elements of certain {Volterra} operators connected with third- and fourth-order differential operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--720},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - The generating elements of certain Volterra operators connected with third- and fourth-order differential operators
JO  - Matematičeskie zametki
PY  - 1968
SP  - 715
EP  - 720
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/
LA  - ru
ID  - MZM_1968_3_6_a11
ER  - 
%0 Journal Article
%A A. P. Khromov
%T The generating elements of certain Volterra operators connected with third- and fourth-order differential operators
%J Matematičeskie zametki
%D 1968
%P 715-720
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/
%G ru
%F MZM_1968_3_6_a11
A. P. Khromov. The generating elements of certain Volterra operators connected with third- and fourth-order differential operators. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 715-720. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a11/