The number of cells of a~dynamical system
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 707-714
Voir la notice de l'article provenant de la source Math-Net.Ru
In a dynamical system with a finite number of elementary stationary points, in which just these points serve as the limiting sets of its trajectories, a component of the connection of the set of trajectory points with the common positive and common negative limiting set is called a cell. An example is constructed which shows that a dynamical system can have any finite number of cells even though the number of stationary points is fixed.
@article{MZM_1968_3_6_a10,
author = {A. D. Myshkis and L. \'E. Reizi\c{n}\v{s}},
title = {The number of cells of a~dynamical system},
journal = {Matemati\v{c}eskie zametki},
pages = {707--714},
publisher = {mathdoc},
volume = {3},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/}
}
A. D. Myshkis; L. É. Reiziņš. The number of cells of a~dynamical system. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 707-714. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/