The number of cells of a~dynamical system
Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 707-714.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a dynamical system with a finite number of elementary stationary points, in which just these points serve as the limiting sets of its trajectories, a component of the connection of the set of trajectory points with the common positive and common negative limiting set is called a cell. An example is constructed which shows that a dynamical system can have any finite number of cells even though the number of stationary points is fixed.
@article{MZM_1968_3_6_a10,
     author = {A. D. Myshkis and L. \'E. Reizi\c{n}\v{s}},
     title = {The number of cells of a~dynamical system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {707--714},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/}
}
TY  - JOUR
AU  - A. D. Myshkis
AU  - L. É. Reiziņš
TI  - The number of cells of a~dynamical system
JO  - Matematičeskie zametki
PY  - 1968
SP  - 707
EP  - 714
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/
LA  - ru
ID  - MZM_1968_3_6_a10
ER  - 
%0 Journal Article
%A A. D. Myshkis
%A L. É. Reiziņš
%T The number of cells of a~dynamical system
%J Matematičeskie zametki
%D 1968
%P 707-714
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/
%G ru
%F MZM_1968_3_6_a10
A. D. Myshkis; L. É. Reiziņš. The number of cells of a~dynamical system. Matematičeskie zametki, Tome 3 (1968) no. 6, pp. 707-714. http://geodesic.mathdoc.fr/item/MZM_1968_3_6_a10/