On the number of simplexes of subdivisions of finite complexes
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 511-522
Voir la notice de l'article provenant de la source Math-Net.Ru
Combinatorial invariants of a finite simplicial complex $K$ are considered that are functions of the number $\alpha_i(K)$ of Simplexes of dimension $i$ of this complex. The main result is Theorem 2, which gives the necessary and sufficient condition for two complexes $K$ and $L$ to have subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $0\le i\infty$. The theorem yields a corollary: if the polyhedra $|K|$ and $|L|$ are homeomorphic, then there exist subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $i\ge0$.
@article{MZM_1968_3_5_a2,
author = {M. L. Gromov},
title = {On the number of simplexes of subdivisions of finite complexes},
journal = {Matemati\v{c}eskie zametki},
pages = {511--522},
publisher = {mathdoc},
volume = {3},
number = {5},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/}
}
M. L. Gromov. On the number of simplexes of subdivisions of finite complexes. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 511-522. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/