On the number of simplexes of subdivisions of finite complexes
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 511-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

Combinatorial invariants of a finite simplicial complex $K$ are considered that are functions of the number $\alpha_i(K)$ of Simplexes of dimension $i$ of this complex. The main result is Theorem 2, which gives the necessary and sufficient condition for two complexes $K$ and $L$ to have subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $0\le i\infty$. The theorem yields a corollary: if the polyhedra $|K|$ and $|L|$ are homeomorphic, then there exist subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $i\ge0$.
@article{MZM_1968_3_5_a2,
     author = {M. L. Gromov},
     title = {On the number of simplexes of subdivisions of finite complexes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--522},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/}
}
TY  - JOUR
AU  - M. L. Gromov
TI  - On the number of simplexes of subdivisions of finite complexes
JO  - Matematičeskie zametki
PY  - 1968
SP  - 511
EP  - 522
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/
LA  - ru
ID  - MZM_1968_3_5_a2
ER  - 
%0 Journal Article
%A M. L. Gromov
%T On the number of simplexes of subdivisions of finite complexes
%J Matematičeskie zametki
%D 1968
%P 511-522
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/
%G ru
%F MZM_1968_3_5_a2
M. L. Gromov. On the number of simplexes of subdivisions of finite complexes. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 511-522. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a2/