Uniqueness theorem for harmonic functions
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 247-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

If the boundary values of a function, harmonic in a sphere, and its normal derivative decrease sufficiently fast to zero as a fixed point of the sphere is approached, then the corresponding function is identically zero. This note gives an unimprovable condition on the rate of decrease for which the stated uniqueness theorem holds.
@article{MZM_1968_3_3_a1,
     author = {V. Rao},
     title = {Uniqueness theorem for harmonic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--252},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a1/}
}
TY  - JOUR
AU  - V. Rao
TI  - Uniqueness theorem for harmonic functions
JO  - Matematičeskie zametki
PY  - 1968
SP  - 247
EP  - 252
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a1/
LA  - ru
ID  - MZM_1968_3_3_a1
ER  - 
%0 Journal Article
%A V. Rao
%T Uniqueness theorem for harmonic functions
%J Matematičeskie zametki
%D 1968
%P 247-252
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a1/
%G ru
%F MZM_1968_3_3_a1
V. Rao. Uniqueness theorem for harmonic functions. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 247-252. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a1/