Threshold theorem for an~epidemic model
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 179-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses a probability model of the spread of an epidemic in which the elimination of sick persons (through death, immunity, or isolation) is taken into account. The authors find a limit distribution for the magnitude of the epidemic, $\nu$, on the assumption that $n\to\infty$, where n is the original number of susceptible persons, and $\frac{\mu}{\lambda n}\to 1$, where $\lambda$ and $\mu$ are the coefficient of infection and the coefficient of elimination, respectively.
@article{MZM_1968_3_2_a7,
     author = {A. V. Nagaev and A. V. Startsev},
     title = {Threshold theorem for an~epidemic model},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/}
}
TY  - JOUR
AU  - A. V. Nagaev
AU  - A. V. Startsev
TI  - Threshold theorem for an~epidemic model
JO  - Matematičeskie zametki
PY  - 1968
SP  - 179
EP  - 185
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/
LA  - ru
ID  - MZM_1968_3_2_a7
ER  - 
%0 Journal Article
%A A. V. Nagaev
%A A. V. Startsev
%T Threshold theorem for an~epidemic model
%J Matematičeskie zametki
%D 1968
%P 179-185
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/
%G ru
%F MZM_1968_3_2_a7
A. V. Nagaev; A. V. Startsev. Threshold theorem for an~epidemic model. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 179-185. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/