Threshold theorem for an~epidemic model
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 179-185
Voir la notice de l'article provenant de la source Math-Net.Ru
The article discusses a probability model of the spread of an epidemic in which the elimination of sick persons (through death, immunity, or isolation) is taken into account. The authors find a limit distribution for the magnitude of the epidemic, $\nu$, on the assumption that $n\to\infty$, where n is the original number of susceptible persons, and $\frac{\mu}{\lambda n}\to 1$, where $\lambda$ and $\mu$ are the coefficient of infection and the coefficient of elimination, respectively.
@article{MZM_1968_3_2_a7,
author = {A. V. Nagaev and A. V. Startsev},
title = {Threshold theorem for an~epidemic model},
journal = {Matemati\v{c}eskie zametki},
pages = {179--185},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/}
}
A. V. Nagaev; A. V. Startsev. Threshold theorem for an~epidemic model. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 179-185. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a7/