Increasing solutions of linear second-order equations with nonnegative characteristic form
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 171-178
Voir la notice de l'article provenant de la source Math-Net.Ru
In a layer $H\{0$ we consider a linear second-order parabolic equation that degenerates on an arbitrary subset $\overline H$. It is assumed that the coefficient of the time derivative has a zero of sufficiently high order on the hyperplane $t=0$; as a consequence, the Cauchy problem will be unsolvable. The exact bounds are obtained of the permissible growth of the sought-for function when $|x|\to\infty$, ensuring a single-valued solution of the problem without initial data.
@article{MZM_1968_3_2_a6,
author = {A. S. Kalashnikov},
title = {Increasing solutions of linear second-order equations with nonnegative characteristic form},
journal = {Matemati\v{c}eskie zametki},
pages = {171--178},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/}
}
A. S. Kalashnikov. Increasing solutions of linear second-order equations with nonnegative characteristic form. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/