Increasing solutions of linear second-order equations with nonnegative characteristic form
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 171-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a layer $H\{0$ we consider a linear second-order parabolic equation that degenerates on an arbitrary subset $\overline H$. It is assumed that the coefficient of the time derivative has a zero of sufficiently high order on the hyperplane $t=0$; as a consequence, the Cauchy problem will be unsolvable. The exact bounds are obtained of the permissible growth of the sought-for function when $|x|\to\infty$, ensuring a single-valued solution of the problem without initial data.
@article{MZM_1968_3_2_a6,
     author = {A. S. Kalashnikov},
     title = {Increasing solutions of linear second-order equations with nonnegative characteristic form},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/}
}
TY  - JOUR
AU  - A. S. Kalashnikov
TI  - Increasing solutions of linear second-order equations with nonnegative characteristic form
JO  - Matematičeskie zametki
PY  - 1968
SP  - 171
EP  - 178
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/
LA  - ru
ID  - MZM_1968_3_2_a6
ER  - 
%0 Journal Article
%A A. S. Kalashnikov
%T Increasing solutions of linear second-order equations with nonnegative characteristic form
%J Matematičeskie zametki
%D 1968
%P 171-178
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/
%G ru
%F MZM_1968_3_2_a6
A. S. Kalashnikov. Increasing solutions of linear second-order equations with nonnegative characteristic form. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a6/