The best approximation of periodic functions by trigonometric polynomials in $L^2$
Matematičeskie zametki, Tome 2 (1967) no. 5, pp. 513-522
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates are gotten for the best approximations in $L_2(0,2\pi)$ of a periodic function by trigonometric polynomials in terms of its $m$-th continuity modulus or in terms of the continuity modulus of its $r$-th derivative. The inequality $$ E_{n-1}(f)_{L_2}<(C_{2m}^m)^{-1/2}\omega_m(2\pi/n;f)_{L_2} \qquad (f\ne\mathrm{const}) $$ is proved, where the constant $(C_{2m}^m)^{-1/2}$ is unimprovable for the whole space $L_2(0,2\pi)$. Two titles are cited in the bibliography.
@article{MZM_1967_2_5_a8,
author = {N. I. Chernykh},
title = {The best approximation of periodic functions by trigonometric polynomials in~$L^2$},
journal = {Matemati\v{c}eskie zametki},
pages = {513--522},
year = {1967},
volume = {2},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1967_2_5_a8/}
}
N. I. Chernykh. The best approximation of periodic functions by trigonometric polynomials in $L^2$. Matematičeskie zametki, Tome 2 (1967) no. 5, pp. 513-522. http://geodesic.mathdoc.fr/item/MZM_1967_2_5_a8/