Description of the feedback function of a nonlinear shift register
Matematičeskie voprosy kriptografii, Tome 15 (2024), pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear shift register with a feedback function $F$ such that its period coincides with the period of some linear shift register. For this nonlinear shift register we study the methods of construction of a balanced mapping such that its coordinate functions are equivalent to the superposition of the binary function $f$ of $n$ variables and the transformation $\rho_l$ implemented by the shift register with the feedback function $l$. For a concrete function $f$ of the nonlinearity degree $3$ a polynomial of the function $F$ is obtained and its degree is calculated.
@article{MVK_2024_15_a5,
     author = {A. V. Sarantsev},
     title = {Description of the feedback function of a nonlinear shift register},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {15},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_a5/}
}
TY  - JOUR
AU  - A. V. Sarantsev
TI  - Description of the feedback function of a nonlinear shift register
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 101
EP  - 112
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_a5/
LA  - ru
ID  - MVK_2024_15_a5
ER  - 
%0 Journal Article
%A A. V. Sarantsev
%T Description of the feedback function of a nonlinear shift register
%J Matematičeskie voprosy kriptografii
%D 2024
%P 101-112
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_a5/
%G ru
%F MVK_2024_15_a5
A. V. Sarantsev. Description of the feedback function of a nonlinear shift register. Matematičeskie voprosy kriptografii, Tome 15 (2024), pp. 101-112. http://geodesic.mathdoc.fr/item/MVK_2024_15_a5/

[1] Lidl R., Niderraiter G., Konechnye polya, V 2-kh t., Mir, M., 1988

[2] Nikonov V. G., Sarantsev A. V., “O slozhnosti sovmestnoi realizatsii v bazise DNF regulyarnykh sistem bulevykh funktsii”, Matematicheskie voprosy kriptografii, 1:1 (2010), 45–65 | DOI | Zbl

[3] Rozhkov M. I., “Biektivnye otobrazheniya, porozhdaemye filtruyuschim generatorom”, Prikladnaya diskretnaya matematika, 2014, no. 1(23), 27–39

[4] Rozhkov M. I., “K voprosu postroeniya ortogonalnykh sistem dvoichnykh funktsii s ispolzovaniem registra sdviga”, Lesnoi vestnik, 3:3 (2011), 180–185

[5] Rozhkov M. I., “O nekotorykh klassakh nelineinykh registrov sdviga, obladayuschikh odinakovoi tsiklovoi strukturoi”, Diskretnaya matematika, 22:2 (2010), 96–119 | DOI | Zbl

[6] Sarantsev A. V., “Postroenie regulyarnykh sistem odnotipnykh dvoichnykh funktsii s ispolzovaniem registra sdviga”, Lesnoi vestnik, 32:1 (2004), 164–169

[7] Sarantsev A. V., “Svoistva podstanovok, porozhdaemykh odnim klassom filtruyuschikh generatorov”, Matematicheskie voprosy kriptografii, 14:1 (2023), 99–114 | DOI | MR | Zbl

[8] Cheremushkin A. V., “Metody affinnoi i lineinoi klassifikatsii dvoichnykh funktsii”, Trudy po diskretnoi matematike, 4 (2001), 273–314

[9] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, 2010, 398–469 | DOI | MR | Zbl