Multipermutations on the Cartesian product of groups and their properties
Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 111-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Multipermutations are introduced by C.-P. Schnorr and S. Vaudenay as formalization of perfect diffusion in block ciphers. In this paper, we consider a group $X$ and a set $H$ of transformations on $X^2$ introduced by S. Vaudenay. Any bijective transformation from $H$ is a multipermutation. Multipermutations from $H$ are defined by orthomorphisms and complete mappings on $X$. For a set $W$ of distinct cosets of a normal subgroup $W_{0}$ in $X$, we provide multipermutations from $H$ such that they perfectly diffuse one of partitions $W^2$ or $X \times W$. As an example, we prove that Feistel-like involutions on $X$, which are components of the CS-cipher encryption function, perfectly diffuse $X \times W$ for any subgroup $W_{0}$.
@article{MVK_2023_14_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Multipermutations on the {Cartesian} product of groups and their properties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {111--142},
     publisher = {mathdoc},
     volume = {14},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Multipermutations on the Cartesian product of groups and their properties
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 111
EP  - 142
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_a5/
LA  - ru
ID  - MVK_2023_14_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Multipermutations on the Cartesian product of groups and their properties
%J Matematičeskie voprosy kriptografii
%D 2023
%P 111-142
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_a5/
%G ru
%F MVK_2023_14_a5
B. A. Pogorelov; M. A. Pudovkina. Multipermutations on the Cartesian product of groups and their properties. Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 111-142. http://geodesic.mathdoc.fr/item/MVK_2023_14_a5/