Remote voting protocols.~I
Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 89-110

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of orthomorphisms of abelian groups, a post-quantum cryptographic protocol for remote voting has been built, which is resistant to the compromise of a single subscriber. Conditions under which the protocol is resistant to compromise of two subscribers have been found.
@article{MVK_2023_14_a4,
     author = {O. A. Kozlitin and M. A. Suleymanov},
     title = {Remote voting {protocols.~I}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {89--110},
     publisher = {mathdoc},
     volume = {14},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_a4/}
}
TY  - JOUR
AU  - O. A. Kozlitin
AU  - M. A. Suleymanov
TI  - Remote voting protocols.~I
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 89
EP  - 110
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_a4/
LA  - ru
ID  - MVK_2023_14_a4
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%A M. A. Suleymanov
%T Remote voting protocols.~I
%J Matematičeskie voprosy kriptografii
%D 2023
%P 89-110
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_a4/
%G ru
%F MVK_2023_14_a4
O. A. Kozlitin; M. A. Suleymanov. Remote voting protocols.~I. Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 89-110. http://geodesic.mathdoc.fr/item/MVK_2023_14_a4/