Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances
Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 55-70

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of testing statistical hypotheses on the uniformity of distribution and independence of random vectors is interesting from theoretical and practical viewpoints. Many authors had proposed various approaches to solving it. In some tests for the hypotheses on the uniformity of distributions of random vectors in a multidimensional region or on their independence some functions of pairwise distances between sample points are used as statistics. The paper contains a brief review of such tests. A new test for the hypothesis on the uniformity of distribution based on pairwise distances is proposed.
@article{MVK_2023_14_a2,
     author = {A. M. Zubkov},
     title = {Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {14},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
TI  - Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 55
EP  - 70
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_a2/
LA  - ru
ID  - MVK_2023_14_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%T Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances
%J Matematičeskie voprosy kriptografii
%D 2023
%P 55-70
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_a2/
%G ru
%F MVK_2023_14_a2
A. M. Zubkov. Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances. Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 55-70. http://geodesic.mathdoc.fr/item/MVK_2023_14_a2/