Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis
Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 25-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime number, $(V,+)$ be a finite-dimensional vector space over finite field $\mathbb{F}_p$ of cardinality $p$. We investigate elementary Abelian regular subgroups $\mathcal{T}$ of affine group $\mathrm{AGL}(V)$. Every such subgroup determines new binary operation $\circ$ on the set $V$ and can be used in cryptanalysis. We investigate the structure properties of the group of linear maps associated with the group $\mathcal{T}$. The membership criterion for the right regular representation of group $(V, +)$ to belong to the normalizer of $\mathcal{T}$ in symmetric group $\mathrm{Sym}\,(V)$ is obtained. A practically realizable algorithm for testing whether given $\mathrm{s}$-box belongs to the normalizer of some group $\mathcal{T}$ in $\mathrm{Sym}\,(V)$ is proposed and investigated.
@article{MVK_2023_14_a1,
     author = {M. A. Goltvanitsa},
     title = {Elementary {Abelian} regular subgroups of vector space affine group related to cryptanalysis},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {25--53},
     publisher = {mathdoc},
     volume = {14},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_a1/}
}
TY  - JOUR
AU  - M. A. Goltvanitsa
TI  - Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 25
EP  - 53
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_a1/
LA  - ru
ID  - MVK_2023_14_a1
ER  - 
%0 Journal Article
%A M. A. Goltvanitsa
%T Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis
%J Matematičeskie voprosy kriptografii
%D 2023
%P 25-53
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_a1/
%G ru
%F MVK_2023_14_a1
M. A. Goltvanitsa. Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis. Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 25-53. http://geodesic.mathdoc.fr/item/MVK_2023_14_a1/