On the question on the approximation of vectorial functions over finite fields by affine analogues
Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 125-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The measure of closeness of vectorial functions is defined by the Hamming distance in the space of their values, and the nonlinearity of a vector function is defined as the Hamming distance to the set of affine mappings. Bounds and estimates for the distribution of nonlinearity of balanced mappings and substitutions are obtained. Classes of vector functions with high nonlinearity are constructed. The nonlinearity introduced in this way is compared with the nonlinearity defined as the minimal nonlinearity over all nontrivial linear combinations of coordinate functions.
@article{MVK_2022_13_a5,
     author = {V. G. Ryabov},
     title = {On the question on the approximation of vectorial functions over finite fields by affine analogues},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {125--146},
     publisher = {mathdoc},
     volume = {13},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_a5/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - On the question on the approximation of vectorial functions over finite fields by affine analogues
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 125
EP  - 146
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_a5/
LA  - ru
ID  - MVK_2022_13_a5
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T On the question on the approximation of vectorial functions over finite fields by affine analogues
%J Matematičeskie voprosy kriptografii
%D 2022
%P 125-146
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_a5/
%G ru
%F MVK_2022_13_a5
V. G. Ryabov. On the question on the approximation of vectorial functions over finite fields by affine analogues. Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 125-146. http://geodesic.mathdoc.fr/item/MVK_2022_13_a5/