Distribution properties in the sum of linear recurring and the counter sequences over Galois rings
Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 53-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sum of linear recurrent and the counter sequences over Galois rings. We describe distribution properties of such sequences and their representations.
@article{MVK_2022_13_a2,
     author = {O. V. Kamlovskii and V. V. Mizerov},
     title = {Distribution properties in the sum of linear recurring and the counter sequences over {Galois} rings},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {13},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_a2/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
AU  - V. V. Mizerov
TI  - Distribution properties in the sum of linear recurring and the counter sequences over Galois rings
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 53
EP  - 67
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_a2/
LA  - ru
ID  - MVK_2022_13_a2
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%A V. V. Mizerov
%T Distribution properties in the sum of linear recurring and the counter sequences over Galois rings
%J Matematičeskie voprosy kriptografii
%D 2022
%P 53-67
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_a2/
%G ru
%F MVK_2022_13_a2
O. V. Kamlovskii; V. V. Mizerov. Distribution properties in the sum of linear recurring and the counter sequences over Galois rings. Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 53-67. http://geodesic.mathdoc.fr/item/MVK_2022_13_a2/

[1] Nechaev A.A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139

[2] Nechaev A.A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56

[3] Vasin A.R., Kamlovskii O.V., Mizerov V.V., “Svoistva raspredelenii elementov v odnom klasse posledovatelnostei nad koltsami Galua”, Matematicheskie voprosy kriptografii, 12:4 (2021), 25–41 | MR

[4] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechaev A.A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR

[5] Kamlovskii O.V., “Raspredelenie $r$-gramm v odnom klasse ravnomernykh posledovatelnostei nad koltsami vychetov”, Probl. peredachi inf., 50:1 (2014), 98–115 | MR

[6] Kamlovskii O.V., “Ravnomernye posledovatelnosti nad prostymi polyami, postroennye iz odnogo klassa lineinykh rekurrent nad koltsami vychetov”, Probl. peredachi inf., 50:2 (2014), 60–76 | MR

[7] Kamlovskii O.V., “Koeffitsienty kross-korrelyatsii razryadnykh posledovatelnostei ravnomernykh lineinykh rekurrent nad primarnym koltsom vychetov”, Matematicheskie voprosy kriptografii, 11:1 (2020), 47–62 | MR

[8] Kamlovskii O.V., Kuzmin A.S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matem., 6:4 (2000), 1083–1094 | MR

[9] Lidl R., Niderraiter G., Konechnye polya, V 2 t., Mir, M., 1988, 824 pp. | MR

[10] Kamlovskii O.V., “Spektralnyi metod otsenki chisla reshenii sistem nelineinykh uravnenii s lineinymi rekurrentnymi argumentami”, Diskretnaya matematika, 28:2 (2016), 27–43

[11] Solodovnikov V.I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113