Multiparametric models of random partitions. Limit distributions and statistical inference
Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A $d$-dimensional parametric model on the set of partitions of $n$-set is introduced and its detailed analysis for the two-dimensional case $(d=2)$ is carried out. The asymptotic behavior of the joint distribution of the numbers of blocks of even and odd sizes of a random partition is studied for $n \to \infty$, and statistical tests for the hypothesis on the uniformity of partitions against the possible alternatives are constructed.
@article{MVK_2022_13_a1,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Multiparametric models of random partitions. {Limit} distributions and statistical inference},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {13},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_a1/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Multiparametric models of random partitions. Limit distributions and statistical inference
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 37
EP  - 51
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_a1/
LA  - ru
ID  - MVK_2022_13_a1
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Multiparametric models of random partitions. Limit distributions and statistical inference
%J Matematičeskie voprosy kriptografii
%D 2022
%P 37-51
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_a1/
%G ru
%F MVK_2022_13_a1
G. I. Ivchenko; Yu. I. Medvedev. Multiparametric models of random partitions. Limit distributions and statistical inference. Matematičeskie voprosy kriptografii, Tome 13 (2022), pp. 37-51. http://geodesic.mathdoc.fr/item/MVK_2022_13_a1/