Construction of orthomorphic $\mathrm{MDS}$ matrices with primitive characteristic polynomial
Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 125-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Matrices having the Maximum Distance Separable property ($\mathrm{MDS}$ matrices) are a vital component for the design of symmetric-key algorithms to achieve the diffusion property. In a number of papers the construction and characterization of $\mathrm{MDS}$ matrices with a low implementation cost in the context of the so-called lightweight schemes were considered. However, small attention was paid to the influence of reducibility of the proposed $\mathrm{MDS}$ matrices; this property may be used by an adversary to exploit the nontrivial invariant subspaces associated to corresponding mappings. We propose some methods for constructing $\mathrm{MDS}$ matrices with primitive characteristic polynomial that provide better resistance against the so-called invariant subspaces attacks.
@article{MVK_2021_12_a8,
     author = {O. C. Puente and R. A. de la Cruz Jim\'enez},
     title = {Construction of orthomorphic $\mathrm{MDS}$ matrices with primitive characteristic polynomial},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {125--143},
     publisher = {mathdoc},
     volume = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a8/}
}
TY  - JOUR
AU  - O. C. Puente
AU  - R. A. de la Cruz Jiménez
TI  - Construction of orthomorphic $\mathrm{MDS}$ matrices with primitive characteristic polynomial
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 125
EP  - 143
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_a8/
LA  - en
ID  - MVK_2021_12_a8
ER  - 
%0 Journal Article
%A O. C. Puente
%A R. A. de la Cruz Jiménez
%T Construction of orthomorphic $\mathrm{MDS}$ matrices with primitive characteristic polynomial
%J Matematičeskie voprosy kriptografii
%D 2021
%P 125-143
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_a8/
%G en
%F MVK_2021_12_a8
O. C. Puente; R. A. de la Cruz Jiménez. Construction of orthomorphic $\mathrm{MDS}$ matrices with primitive characteristic polynomial. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 125-143. http://geodesic.mathdoc.fr/item/MVK_2021_12_a8/

[1] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Uchebnik, 2nd, Lan, St. Petersburg, 2015, 608 pp. (in Russian)

[2] Lidl R., Niederreiter H., Introduction to finite fields and their applications, Cambridge Univ. Press, London, 1986, viii+407 pp. | Zbl

[3] Zhe-Xian Wan, Lectures on Finite Fields and Galois Rings, Beijing, 2003, 352 pp. | Zbl

[4] Zierler N., “Linear recurring sequences”, J. Soc. Indust. Appl. Math., 7:1 (1959), 31–48 | DOI | MR

[5] Augot D., Finiasz M., “Direct construction of recursive MDS diffusion layers using shortened BCH codes”, FSE 2014, Lect. Notes Comput. Sci., 8540, 2014, 3–17 | DOI

[6] Barreto P., Rijmen V., “The Khazad Legacy-Level Block Cipher”, First Open NESSIE Workshop, 2000, 79 pp. (Submission to NESSIE)

[7] Burov D. A., Pogorelov B. A., “The influence of linear mapping reducibility on the choice of round constants”, Matematicheskie Voprosy Kriptografii, 8:2 (2017), 51-64 | DOI | MR | Zbl

[8] Burov D. A., Pogorelov B. A., “The permutation group insight on the diffusion property of linear mappings”, Matematicheskie Voprosy Kriptografii, 9:2 (2018), 47-58 | DOI | MR | Zbl

[9] GOST R 34.12-2015. Information technology. Cryptographic protection of information. Block ciphers, Standartinform, M., 2015 (in Russian)

[10] Gupta K.C., Ray I.G., “On constructions of MDS matrices from companion matrices for lightweight cryptography”, Lect. Notes Comput. Sci., 8128, 2013, 29–43 | DOI

[11] Toh D., Teo J., Khoo K., Sim S.M., “Lightweight MDS serial-type matrices with minimal fixed XOR count”, AFRICACRYPT 2018, Lect. Notes Comput. Sci., 10831, 2018, 51–71 | DOI | Zbl

[12] Sarkar S., Sim S. M., “A deeper understanding of the XOR count distribution in the context of lightweight cryptography”, AFRICACRYPT 2016, Lect. Notes Comput. Sci., 9646, 2016, 167–182 | DOI | Zbl

[13] Pogorelov B. A., Pudovkina M. A., “On the distance from permutations to imprimitive groups for a fixed system of imprimitivity”, Discrete Math. Appl., 24:2 (2014), 95-108 (in Russian) | DOI | MR | Zbl

[14] Pogorelov B. A., Pudovkina M. A, “Factor structures of transformations”, Matematicheskie Voprosy Kriptografii, 3:3 (2012), 81-104 (in Russian) | DOI | Zbl

[15] Pogorelov B. A., Pudovkina M. A., “Combinatorial characterization of XL-layers”, Matematicheskie Voprosy Kriptografii, 4:3 (2013), 99-129 (in Russian) | DOI | Zbl

[16] O. Coy Puente, R. A. De La Cruz Jiménez, “Some methods for constructing MDS matrices over finite fields”, Prikl. Diskr. Matem., 2019, 5–18 (in Russian) | MR | Zbl

[17] Sage Mathematics Software Version 8.1, 2018 http://www.sagemath.org