Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2021_12_a7, author = {D. I. Koshelev}, title = {Faster point compression for elliptic curves of $j$-invariant $0$}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {115--123}, publisher = {mathdoc}, volume = {12}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a7/} }
D. I. Koshelev. Faster point compression for elliptic curves of $j$-invariant $0$. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 115-123. http://geodesic.mathdoc.fr/item/MVK_2021_12_a7/
[1] El Mrabet N., Joye M., Guide to Pairing-Based Cryptography, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2016
[2] Sakemi Y., Kobayashi T., Saito T., Wahby R., Pairing-friendly curves, IETF draft, 2021
[3] Bowe S., BLS12-381: New zk-SNARK elliptic curve construction, Zcash Company blog: , 2017 https://z.cash/blog/new-snark-curve/
[4] Groth J., “On the size of pairing-based non-interactive arguments”, EUROCRYPT 2016, Lect. Notes Comput. Sci., 9665, 2016, 305–326 | DOI
[5] Khabbazian M., Gulliver T., Bhargava V., “Double point compression with applications to speeding up random point multiplication”, IEEE Trans. Computers, 56:3 (2007), 305–313 | DOI | MR | Zbl
[6] Silverman J., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009, 533 pp. | DOI | Zbl
[7] Koshelev D., “New point compression method for elliptic $\mathbb{F}{q^2}$-curves of $j$-invariant $0$”, Finite Fields and Their Applications, 69 (2021), 101774 | DOI | MR | Zbl
[8] Cohen H. et al., Handbook of elliptic and hyperelliptic curve cryptography, Discrete Mathematics and Its Applications, 34, Chapman and Hall/CRC, New York, 2005
[9] Liedtke C., “Algebraic surfaces in positive characteristic”, Birational Geometry, Rational Curves, and Arithmetic, Simons Symposia, Springer, New York, 2013, 229–292 | MR | Zbl
[10] Cho G. et al., “New cube root algorithm based on the third order linear recurrence relations in finite fields”, Designs, Codes and Cryptography, 75:3 (2015), 483–495 | DOI | MR | Zbl
[11] Koshelev D., Magma code, , 2021 https://github.com/dishport/Faster-point-compression-for-elliptic-curves-of-j-invariant-0