A digital signature scheme $\mathrm{mCFS}^{\mathrm{QC{-}LDPC}}$ based on $\mathrm{QC}$-$\mathrm{LDPC}$ codes
Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 99-113

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose to replace the Goppa codes with $\mathrm{QC}$-$\mathrm{LDPC}$ codes in the digital signature scheme $\mathrm{mCFS}_c$. With this modification, we obtain a considerable reduction ($50$ times on average) of the public key sizes without losing security. Our theoretical security model is the same as for the $\mathrm{mCFS}$ scheme. We discuss the possibility of applying some known methods to attacks on the hash function and on the public/private key setting. We also propose a set of parameters for several security levels; for example, we can get $80$ bits of security with the public key size $\approx 1.82$ KB, $128$ bits of security with $\approx 3.87$ KB, and $256$ bits of security with $\approx 13.88$ KB.
@article{MVK_2021_12_a6,
     author = {E. D. Fiallo},
     title = {A digital signature scheme $\mathrm{mCFS}^{\mathrm{QC{-}LDPC}}$ based on $\mathrm{QC}$-$\mathrm{LDPC}$ codes},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a6/}
}
TY  - JOUR
AU  - E. D. Fiallo
TI  - A digital signature scheme $\mathrm{mCFS}^{\mathrm{QC{-}LDPC}}$ based on $\mathrm{QC}$-$\mathrm{LDPC}$ codes
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 99
EP  - 113
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_a6/
LA  - en
ID  - MVK_2021_12_a6
ER  - 
%0 Journal Article
%A E. D. Fiallo
%T A digital signature scheme $\mathrm{mCFS}^{\mathrm{QC{-}LDPC}}$ based on $\mathrm{QC}$-$\mathrm{LDPC}$ codes
%J Matematičeskie voprosy kriptografii
%D 2021
%P 99-113
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_a6/
%G en
%F MVK_2021_12_a6
E. D. Fiallo. A digital signature scheme $\mathrm{mCFS}^{\mathrm{QC{-}LDPC}}$ based on $\mathrm{QC}$-$\mathrm{LDPC}$ codes. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/MVK_2021_12_a6/