Nonlinearity of bent functions over finite fields
Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 87-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function of $n$ variables over a field of $q$ elements is called maximally nonlinear if it has the greatest nonlinearity among all $q$-valued functions of $n$ variables. It is proved that for $q>2$ and even values of $n$, a necessary condition for the maximum nonlinearity of a function is the absence of a linear manifold of dimension not smaller than $n/2$, on which its restriction coincides with the restriction of some affine function. It follows from this that the bent functions from Maiorana–McFarland and Dillon families are not maximally nonlinear. A new family of maximally nonlinear bent functions of degrees from $2$ to $\max \{2, (q-1)(n/2-1)\}$ with nonlinearity equal to $(q-1)q^{n-1} - q^{n/2-1}$ is constructed.
@article{MVK_2021_12_a5,
     author = {V. G. Ryabov},
     title = {Nonlinearity of bent functions over finite fields},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a5/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - Nonlinearity of bent functions over finite fields
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 87
EP  - 98
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_a5/
LA  - ru
ID  - MVK_2021_12_a5
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T Nonlinearity of bent functions over finite fields
%J Matematičeskie voprosy kriptografii
%D 2021
%P 87-98
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_a5/
%G ru
%F MVK_2021_12_a5
V. G. Ryabov. Nonlinearity of bent functions over finite fields. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 87-98. http://geodesic.mathdoc.fr/item/MVK_2021_12_a5/

[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[2] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | MR | Zbl

[3] Ryabov V. G., “O priblizhenii ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogooobraziya affinnymi analogami”, Diskretnaya matematika, 32:4 (2020), 89–102 | MR

[4] Ryabov V. G., “Maksimalno nelineinye funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:1 (2021), 47–63 | MR

[5] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | MR | Zbl

[6] Carlet C., Ding C., “Highly nonlinear mappings”, J. Complexity, 20:2-3 (2004), 205–244 | DOI | MR | Zbl

[7] Coulter, R. S., Matthews, R. W., “Bent polynomials over finite fields”, Bull. Austral. Math. Soc., 56 (1997), 429–437 | DOI | MR | Zbl

[8] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | Zbl

[9] Nyberg K., “Constructions of bent functions and difference sets”, EUROCRYPT'90, Lect. Notes Comput. Sci., 473, 1991, 151–160 | DOI | Zbl

[10] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | Zbl