Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2021_12_a4, author = {B. A. Pogorelov and M. A. Pudovkina}, title = {Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {65--85}, publisher = {mathdoc}, volume = {12}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/} }
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$ JO - Matematičeskie voprosy kriptografii PY - 2021 SP - 65 EP - 85 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/ LA - ru ID - MVK_2021_12_a4 ER -
%0 Journal Article %A B. A. Pogorelov %A M. A. Pudovkina %T Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$ %J Matematičeskie voprosy kriptografii %D 2021 %P 65-85 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/ %G ru %F MVK_2021_12_a4
B. A. Pogorelov; M. A. Pudovkina. Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 65-85. http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/
[1] Glukhov M. M., “K analizu nekotorykh sistem otkrytogo raspredeleniya klyuchei, osnovannykh na neabelevykh gruppakh”, Matematicheskie voprosy kriptografii, 1:4 (2010), 5–22 | Zbl
[2] Glukhov M. M., “O matritsakh perekhodov raznostei pri ispolzovanii nekotorykh modulyarnykh grupp”, Matematicheskie voprosy kriptografii, 4:4 (2013), 27–47 | Zbl
[3] Sidelnikov V. M., Cherepnev M. A., Yaschenko V. V., “Sistemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnykh polugrupp”, Doklady RAN, 332:5 (1993), 566–567 | Zbl
[4] Carter G., Dawson E., Nielsen L., “DESV: A Latin square variation of DES”, Proc. of Workshop on Selected Areas of Cryptography, SAC 1995 (Ottawa, Canada), 144–158
[5] Biham E., Shamir A., Differential cryptanalysis of the Data Encryption Standard, Springer, 1993, ix+188 pp. | Zbl
[6] Hawkes P., O'Connor L., “XOR and non-XOR differential probabilities”, EUROCRYPT'99, Lect. Notes Comput. Sci., 1592, 1999, 272–285 | DOI | MR | Zbl
[7] Alagic G., Russell A., “Quantum-secure symmetric-key cryptography based on hidden shifts”, EUROCRYPT 2017, v. III, Lect. Notes Comput. Sci., 10212, 2017, 65–93 | DOI | Zbl
[8] Bonnetain X., Naya-Plasencia M., “Hidden shift quantum cryptanalysis and implications”, ASIACRYPT 2018, v. I, Lect. Notes Comput. Sci., 11274, 560–592 | MR
[9] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, 1996, 346 pp. | Zbl
[10] Kuperberg G., “A subexponential-time quantum algorithm for the dihedral hidden subgroup problem”, SIAM J. Comput., 35:1 (2005), 170–188 | DOI | MR | Zbl
[11] Diskretnaya matematika. Entsiklopediya, Bolshaya Rossiiskaya entsiklopediya, M., 2004, 382 pp.
[12] Kholl M., Teoriya grupp, IL, M., 1962, 460 pp.
[13] Berkovich Y., Janko Z., Groups of prime power order, v. 3, De Gruyter Expos. in Math., 56, W. de Gruyter GmbH, Berlin, 2011, 666 pp. | DOI | Zbl
[14] Craven D. A., The theory of p-groups. Lecture Notes, Hilary Term, 2008, 48 pp.
[15] Berkovich Y., Groups of Prime Power Order, v. 1, De Gruyter Expos. in Math., 56, W. de Gruyter GmbH, Berlin, 2008, 532 pp.
[16] Zhu D. G., Zuo G. X., “The automorphism group and holomorph of quaternion group (in generalized sense)”, Acta Math. Sci., Ser. A (Chin. ed.), 25 (2005), 79–83 | MR | Zbl
[17] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra. Uchebnik, 2-e izd., ispr. i dop., Lan, SPb., 2015, 608 pp.
[18] Malone J. J., “Generalized quaternion groups and distributively generated near-rings”, Proc. Edinburgh Math. Soc., 18:3 (1973), 234–234 | DOI
[19] Conrad K., Generalized quaternions, 2010, 8 pp. http://www.semanticscholar.org
[20] Alperin J. L., Brauer R., Gorenstein D., “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Amer. Math. Soc., 151:1 (1970), 1–261 | MR | Zbl
[21] Schaefer J., Schlechtweg K., “On the structure of symmetric spaces of semidihedral groups”, Involve, 10:4 (2017), 665–676 | DOI | MR | Zbl