Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$
Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 65-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

For all nonabelian $2$-groups with cyclic subgroup of index $2$ (the dihedral group $D_{2^m}$, the generalized quaternion group $Q_{2^m}$, the modular maximal-cyclic group $M_{2^m}$, the quasidigedral group $SD_{2^m}$) we describe properties of regular permutation representations. For each group we characterize all nontrivial imprimitivity systems and corresponding homomorphisms.
@article{MVK_2021_12_a4,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {65--85},
     publisher = {mathdoc},
     volume = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 65
EP  - 85
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/
LA  - ru
ID  - MVK_2021_12_a4
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$
%J Matematičeskie voprosy kriptografii
%D 2021
%P 65-85
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/
%G ru
%F MVK_2021_12_a4
B. A. Pogorelov; M. A. Pudovkina. Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 65-85. http://geodesic.mathdoc.fr/item/MVK_2021_12_a4/

[1] Glukhov M. M., “K analizu nekotorykh sistem otkrytogo raspredeleniya klyuchei, osnovannykh na neabelevykh gruppakh”, Matematicheskie voprosy kriptografii, 1:4 (2010), 5–22 | Zbl

[2] Glukhov M. M., “O matritsakh perekhodov raznostei pri ispolzovanii nekotorykh modulyarnykh grupp”, Matematicheskie voprosy kriptografii, 4:4 (2013), 27–47 | Zbl

[3] Sidelnikov V. M., Cherepnev M. A., Yaschenko V. V., “Sistemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnykh polugrupp”, Doklady RAN, 332:5 (1993), 566–567 | Zbl

[4] Carter G., Dawson E., Nielsen L., “DESV: A Latin square variation of DES”, Proc. of Workshop on Selected Areas of Cryptography, SAC 1995 (Ottawa, Canada), 144–158

[5] Biham E., Shamir A., Differential cryptanalysis of the Data Encryption Standard, Springer, 1993, ix+188 pp. | Zbl

[6] Hawkes P., O'Connor L., “XOR and non-XOR differential probabilities”, EUROCRYPT'99, Lect. Notes Comput. Sci., 1592, 1999, 272–285 | DOI | MR | Zbl

[7] Alagic G., Russell A., “Quantum-secure symmetric-key cryptography based on hidden shifts”, EUROCRYPT 2017, v. III, Lect. Notes Comput. Sci., 10212, 2017, 65–93 | DOI | Zbl

[8] Bonnetain X., Naya-Plasencia M., “Hidden shift quantum cryptanalysis and implications”, ASIACRYPT 2018, v. I, Lect. Notes Comput. Sci., 11274, 560–592 | MR

[9] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, 1996, 346 pp. | Zbl

[10] Kuperberg G., “A subexponential-time quantum algorithm for the dihedral hidden subgroup problem”, SIAM J. Comput., 35:1 (2005), 170–188 | DOI | MR | Zbl

[11] Diskretnaya matematika. Entsiklopediya, Bolshaya Rossiiskaya entsiklopediya, M., 2004, 382 pp.

[12] Kholl M., Teoriya grupp, IL, M., 1962, 460 pp.

[13] Berkovich Y., Janko Z., Groups of prime power order, v. 3, De Gruyter Expos. in Math., 56, W. de Gruyter GmbH, Berlin, 2011, 666 pp. | DOI | Zbl

[14] Craven D. A., The theory of p-groups. Lecture Notes, Hilary Term, 2008, 48 pp.

[15] Berkovich Y., Groups of Prime Power Order, v. 1, De Gruyter Expos. in Math., 56, W. de Gruyter GmbH, Berlin, 2008, 532 pp.

[16] Zhu D. G., Zuo G. X., “The automorphism group and holomorph of quaternion group (in generalized sense)”, Acta Math. Sci., Ser. A (Chin. ed.), 25 (2005), 79–83 | MR | Zbl

[17] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra. Uchebnik, 2-e izd., ispr. i dop., Lan, SPb., 2015, 608 pp.

[18] Malone J. J., “Generalized quaternion groups and distributively generated near-rings”, Proc. Edinburgh Math. Soc., 18:3 (1973), 234–234 | DOI

[19] Conrad K., Generalized quaternions, 2010, 8 pp. http://www.semanticscholar.org

[20] Alperin J. L., Brauer R., Gorenstein D., “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Amer. Math. Soc., 151:1 (1970), 1–261 | MR | Zbl

[21] Schaefer J., Schlechtweg K., “On the structure of symmetric spaces of semidihedral groups”, Involve, 10:4 (2017), 665–676 | DOI | MR | Zbl