Properties of distributions of elements in one class of sequences over Galois rings
Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 25-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the frequencies of $r$-tuples in one class of linear recurring sequences over Galois rings and establish bounds for them.
@article{MVK_2021_12_a1,
     author = {A. R. Vasin and O. V. Kamlovskii and V. V. Mizerov},
     title = {Properties of distributions of elements in one class of sequences over {Galois} rings},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {25--41},
     publisher = {mathdoc},
     volume = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/}
}
TY  - JOUR
AU  - A. R. Vasin
AU  - O. V. Kamlovskii
AU  - V. V. Mizerov
TI  - Properties of distributions of elements in one class of sequences over Galois rings
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 25
EP  - 41
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/
LA  - ru
ID  - MVK_2021_12_a1
ER  - 
%0 Journal Article
%A A. R. Vasin
%A O. V. Kamlovskii
%A V. V. Mizerov
%T Properties of distributions of elements in one class of sequences over Galois rings
%J Matematičeskie voprosy kriptografii
%D 2021
%P 25-41
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/
%G ru
%F MVK_2021_12_a1
A. R. Vasin; O. V. Kamlovskii; V. V. Mizerov. Properties of distributions of elements in one class of sequences over Galois rings. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 25-41. http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/

[1] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | Zbl

[2] Elizarov V. P., Konechnye koltsa. Osnovy teorii, M., 1993, 258 pp.

[3] McDonald B. R., Finite rings with identity, Dekker, New York, 1974, 429 pp. | Zbl

[4] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[5] Kamlovskii O. V., “Raspredelenie $r$-gramm v odnom klasse ravnomernykh posledovatelnostei nad koltsami vychetov”, Problemy peredachi informatsii, 50:1 (2014), 98–115 | MR | Zbl

[6] Kamlovskii O. V., “Koeffitsienty kross-korrelyatsii razryadnykh posledovatelnostei ravnomernykh lineinykh rekurrent nad primarnym koltsom vychetov”, Matematicheskie voprosy kriptografii, 11:1 (2020), 47–62 | MR | Zbl

[7] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, Lan, SPb., 2015, 608 pp.

[8] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 18.:3 (1993), 21–56

[9] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl

[10] Kamlovskii O. V., “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN. Ser. matem., 77:6 (2013), 71–96 | MR | Zbl

[11] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 822 pp.

[12] Niederreiter H., Shparlinski I. E., “On the distribution and lattice structure of nonlinear congruential pseudorandom numbers”, Finite Fields and Appl., 5:3 (1999), 246–253 | DOI | MR | Zbl

[13] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matem., 6:4 (2000), 1083–1094 | MR | Zbl

[14] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | MR | Zbl

[15] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, Gl. red. fiz.-mat. lit., M., 1985, 408 pp.

[16] Niederreiter H., Winterhof A., Applied number theory, Springer Int. Publ., 2015, 452 pp. | Zbl

[17] Vasin A. R., “Otsenki otkloneniya lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Diskretnaya matematika, 31:3 (2019), 17–25