Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2021_12_a1, author = {A. R. Vasin and O. V. Kamlovskii and V. V. Mizerov}, title = {Properties of distributions of elements in one class of sequences over {Galois} rings}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {25--41}, publisher = {mathdoc}, volume = {12}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/} }
TY - JOUR AU - A. R. Vasin AU - O. V. Kamlovskii AU - V. V. Mizerov TI - Properties of distributions of elements in one class of sequences over Galois rings JO - Matematičeskie voprosy kriptografii PY - 2021 SP - 25 EP - 41 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/ LA - ru ID - MVK_2021_12_a1 ER -
%0 Journal Article %A A. R. Vasin %A O. V. Kamlovskii %A V. V. Mizerov %T Properties of distributions of elements in one class of sequences over Galois rings %J Matematičeskie voprosy kriptografii %D 2021 %P 25-41 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/ %G ru %F MVK_2021_12_a1
A. R. Vasin; O. V. Kamlovskii; V. V. Mizerov. Properties of distributions of elements in one class of sequences over Galois rings. Matematičeskie voprosy kriptografii, Tome 12 (2021), pp. 25-41. http://geodesic.mathdoc.fr/item/MVK_2021_12_a1/
[1] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | Zbl
[2] Elizarov V. P., Konechnye koltsa. Osnovy teorii, M., 1993, 258 pp.
[3] McDonald B. R., Finite rings with identity, Dekker, New York, 1974, 429 pp. | Zbl
[4] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[5] Kamlovskii O. V., “Raspredelenie $r$-gramm v odnom klasse ravnomernykh posledovatelnostei nad koltsami vychetov”, Problemy peredachi informatsii, 50:1 (2014), 98–115 | MR | Zbl
[6] Kamlovskii O. V., “Koeffitsienty kross-korrelyatsii razryadnykh posledovatelnostei ravnomernykh lineinykh rekurrent nad primarnym koltsom vychetov”, Matematicheskie voprosy kriptografii, 11:1 (2020), 47–62 | MR | Zbl
[7] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, Lan, SPb., 2015, 608 pp.
[8] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 18.:3 (1993), 21–56
[9] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl
[10] Kamlovskii O. V., “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN. Ser. matem., 77:6 (2013), 71–96 | MR | Zbl
[11] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 822 pp.
[12] Niederreiter H., Shparlinski I. E., “On the distribution and lattice structure of nonlinear congruential pseudorandom numbers”, Finite Fields and Appl., 5:3 (1999), 246–253 | DOI | MR | Zbl
[13] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matem., 6:4 (2000), 1083–1094 | MR | Zbl
[14] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | MR | Zbl
[15] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, Gl. red. fiz.-mat. lit., M., 1985, 408 pp.
[16] Niederreiter H., Winterhof A., Applied number theory, Springer Int. Publ., 2015, 452 pp. | Zbl
[17] Vasin A. R., “Otsenki otkloneniya lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Diskretnaya matematika, 31:3 (2019), 17–25