On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,m)$-functions
Matematičeskie voprosy kriptografii, Tome 11 (2020), pp. 133-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study parameters of some permutations constructed by the «Butterfly» scheme. The influence of these parameters on the algebraic degree of permutation and its differential uniformity is investigated.
@article{MVK_2020_11_a7,
     author = {D. B. Fomin},
     title = {On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,m)$-functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {133--149},
     publisher = {mathdoc},
     volume = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_a7/}
}
TY  - JOUR
AU  - D. B. Fomin
TI  - On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,m)$-functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 133
EP  - 149
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_a7/
LA  - ru
ID  - MVK_2020_11_a7
ER  - 
%0 Journal Article
%A D. B. Fomin
%T On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,m)$-functions
%J Matematičeskie voprosy kriptografii
%D 2020
%P 133-149
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_a7/
%G ru
%F MVK_2020_11_a7
D. B. Fomin. On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,m)$-functions. Matematičeskie voprosy kriptografii, Tome 11 (2020), pp. 133-149. http://geodesic.mathdoc.fr/item/MVK_2020_11_a7/

[1] Biryukov A., Perrin L., Udovenko A., “Reverse-engineering the S-box of Streebog, Kuznyechik and Stribobr1”, EUROCRYPT 2016, Lect. Notes Comput. Sci., 9665, 2016, 372–402 | DOI | MR | Zbl

[2] Perrin L., Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms, Univ. Luxembourg, 2017, 368 pp.

[3] Perrin L., Udovenko A., Biryukov A., “Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem”, CRYPTO 2016, Lect. Notes Comput. Sci., 9815, 2016, 93–122 | DOI | MR | Zbl

[4] Fomin D. B., “New classes of $8$-bit permutations based on a butterfly structure”, Matematicheskie voprosy kriptografii, 10:2 (2019), 169–180 | MR

[5] Fomin D. B., Trifonov D. I., “Ob apparatnoi realizatsii odnogo klassa baitovykh podstanovok”, Prikladnaya diskretnaya matematika. Prilozhenie, 12 (2019), 134–137

[6] Fomin D. B., “O sposobe postroeniya podstanovok prostranstva $V_{2m}$ s ispolzovaniem $(2m,m)$-funktsii”, Matematicheskie voprosy kriptografii, 11:3 (2020), 121–138 | MR

[7] Carlet C., Crama Y., Hammer P. L., “Vectorial Boolean Functions for Cryptography”, Boolean Models and Methods, Cambridge Univ. Press, 2010, 398–470