Periodical properties of multidimensional polynomial generator over Galois ring.~III
Matematičeskie voprosy kriptografii, Tome 11 (2020), pp. 49-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional polynomial transformations of the Galois ring of characteristics $p^n$ are investigated. Several structural parameters of cycles and paths to cycles in orgraphs of such transforms are computed. For some particular cases the structure of orgraph of transform is described modulo $p^2$.
@article{MVK_2020_11_a3,
     author = {O. A. Kozlitin},
     title = {Periodical properties of multidimensional polynomial generator over {Galois} {ring.~III}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {49--76},
     publisher = {mathdoc},
     volume = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_a3/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Periodical properties of multidimensional polynomial generator over Galois ring.~III
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 49
EP  - 76
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_a3/
LA  - ru
ID  - MVK_2020_11_a3
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Periodical properties of multidimensional polynomial generator over Galois ring.~III
%J Matematičeskie voprosy kriptografii
%D 2020
%P 49-76
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_a3/
%G ru
%F MVK_2020_11_a3
O. A. Kozlitin. Periodical properties of multidimensional polynomial generator over Galois ring.~III. Matematičeskie voprosy kriptografii, Tome 11 (2020), pp. 49-76. http://geodesic.mathdoc.fr/item/MVK_2020_11_a3/

[1] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, 2-e izd., ispr. i dop., Lan, Sankt-Peterburg-Moskva-Krasnodar, 2010, 368 pp.

[2] Viktorenkov V. E., “Orgraf polinomialnogo preobrazovaniya nad kommutativnym lokalnym koltsom”, Obozr. prikl. i promyshl. matem., 7:2 (2000), 327

[3] Viktorenkov V. E., “O stroenii orgrafov polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23

[4] Viktorenkov V. E., “Tsiklovaya struktura sluchainykh podstanovok na mnozhestve dvukhtsvetnykh elementov, I”, Matematicheskie voprosy kriptografii, 10:3 (2019), 9–32 | MR

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, 2-e izd., ispr. i dop., Lan, Sankt-Peterburg-Moskva-Krasnodar, 2015, 608 pp.

[6] Elizarov V. P., Konechnye koltsa. Osnovy teorii, Gelios-ARV, M., 2006, 304 pp.

[7] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, Sankt-Peterburg-Moskva-Krasnodar, 2011, 394 pp.

[8] Ermilov D. M., “Kolichestvo polinomialnykh preobrazovanii maksimalnogo perioda nad koltsami Galua nechetnoi kharakteristiki”, Matematicheskie voprosy kriptografii, 9:4 (2018), 85–100 | MR

[9] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57

[10] Ermilov D. M., Kozlitin O. A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 6:3 (2015), 47–73 | MR

[11] Kozlitin O. A., “Otsenka dliny maksimalnogo tsikla v grafe polinomialnogo preobrazovaniya koltsa Galua–Eizenshteina”, Diskretnaya matematika, 29:4 (2017), 41–58

[12] Kozlitin O. A., “Periodicheskie svoistva mnogomernogo polinomialnogo generatora nad koltsom Galua. I”, Matematicheskie voprosy kriptografii, 9:3 (2018), 61–98 | MR

[13] Kozlitin O. A., “Periodicheskie svoistva mnogomernogo polinomialnogo generatora nad koltsom Galua. II”, Matematicheskie voprosy kriptografii, 11:1 (2020), 63–100 | MR

[14] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | Zbl

[15] Sachkov V. N., “Operator redutsirovaniya, I”, Trudy po diskretnoi matematike, 2 (1998), 282–295 | MR | Zbl

[16] A. I. Kostrikin (red.), Sbornik zadach po algebre, Faktorial, M., 1995

[17] Diskson L. E., “General theory of modular invariants”, Trans. Amer. Math. Soc., 10:2 (1909), 123–158 | DOI | MR

[18] Fisher B., “A note on Hensel's lemma in several variables”, Proc. Amer. Math. Soc., 125 (1997) | DOI | MR | Zbl

[19] Parvatov N. G., “On the period length of vector sequences generated by polynomials modulo prime powers”, Prikl. diskret. matem., 2016, no. 1 (31), 57–61 | MR | Zbl