Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2020_11_a1, author = {V. A. Vatutin}, title = {Asymptotic properties of the number of inversions in a random forest}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {7--22}, publisher = {mathdoc}, volume = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_a1/} }
V. A. Vatutin. Asymptotic properties of the number of inversions in a random forest. Matematičeskie voprosy kriptografii, Tome 11 (2020), pp. 7-22. http://geodesic.mathdoc.fr/item/MVK_2020_11_a1/
[1] Vatutin V. A., “Raspredelenie rasstoyaniya do kornya minimalnogo poddereva, soderzhaschego vse vershiny dannoi vysoty”, Teoriya veroyatn. i ee primen., 38:2 (1993), 273–287 | MR | Zbl
[2] Vatutin V. A., “Asimptoticheskie svoistva chisla inversii v raskrashennykh derevyakh”, Matematicheskie voprosy kriptografii, 10:4 (2019), 9–24 | MR
[3] Kharris T., Teoriya vetvyaschikhsya protsessov, Nauka, M., 1966, 355 pp.
[4] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 207 pp. | MR
[5] Pavlov Yu. L., “Predelnye raspredeleniya vysoty sluchainogo lesa”, Teoriya veroyatn. i ee primen., 28:3 (1983), 449–457 | MR | Zbl
[6] Addario-Berry L., Devroye L., Janson S., “Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees”, Ann. Probab., 41:2 (2013), 1072–1087 | DOI | MR | Zbl
[7] Aldous D., Pitman J., “Brownian bridge asymptotics for random mappings”, Random Struct. Algor., 5 (1994), 487–512 | DOI | MR | Zbl
[8] Cai X. S., Holmgren C., Janson S., Johansson T., Skerman F., “Inversions in split trees and conditional Galton-Watson trees”, Comb., Probab. and Comput., 28:3 (2019), 335–364 | DOI | MR | Zbl
[9] Flajolet P., Poblete P., Viola A., “On the analysis of linear probing hashing”, Algorithmica, 22 (1998), 490–515 | DOI | MR | Zbl
[10] Chassaing P., Louchard G., “Reflected Brownian bridge area conditional on its local time at the origin”, J. Algorithms, 44 (2002, 29–51) | DOI | MR | Zbl
[11] Knight F. B., “The moments of the area under reflected Brownian bridge conditional on its local time at zero”, Int. J. Stoch. Analysis, 13:2 (2000), 99–124 | MR | Zbl
[12] Pitman J., Combinatorial Stochastic Processes, Lect. Notes Math., 1875, Springer-Verlag, Berlin–Heidelberg, 2006, 260 pp. | MR | Zbl
[13] Pitman J., “The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest”, Ann. Probab., 27:1 (1999), 261–283 | DOI | MR | Zbl