Characterization of mappings by the nonisometricity property
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 77-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integer-valued metric $\mu $ on a vector space over $GF(2)$ we introduce a new measure which characterize the non-coordination between $\mu$ and transformation $g$ of the space. It is called a nonisometric index of transformation $g$. In this paper we deal with metrics which are invariant under a translation group of the vector space over $GF(2)$. For different classes of transformations (including involutions and APN permutations) we find the values of nonisometric indices or their extremal estimates.
@article{MVK_2019_10_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Characterization of mappings by the nonisometricity property},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {77--116},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Characterization of mappings by the nonisometricity property
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 77
EP  - 116
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/
LA  - ru
ID  - MVK_2019_10_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Characterization of mappings by the nonisometricity property
%J Matematičeskie voprosy kriptografii
%D 2019
%P 77-116
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/
%G ru
%F MVK_2019_10_a5
B. A. Pogorelov; M. A. Pudovkina. Characterization of mappings by the nonisometricity property. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 77-116. http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/

[1] Dixon J., Mortimer B., Permutation groups, Carleton Univ., 1996, 346 pp. | MR

[2] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 190–219

[3] Pogorelov B. A., Pudovkina M. A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11, no. 2, 2008, 147–191

[4] Pudovkina M. A., Kombinatorno-algebraicheskie struktury iteratsionnykh funktsii v sistemakh zaschity informatsii, Dic. d-ra fiz.-matem. nauk, Tomsk. gos. un-t, 2016, 300 pp.

[5] Pogorelov B. A., Pudovkina M. A., “O rasstoyaniyakh ot podstanovok do imprimitivnykh grupp pri fiksirovannoi sisteme imprimitivnosti”, Diskretnaya matematika, 25:3 (2013), 78–95 | DOI

[6] Pogorelov B. A., Pudovkina M. A., “Naturalnye metriki i ikh svoistva. Ch. 1. Podmetriki i nadmetriki”, Matematicheskie voprosy kriptografii, 2:4 (2011), 49–74 | DOI

[7] Pogorelov B. A., Osnovy teorii grupp podstanovok, v. 1, Obschie voprosy, M., 1986, 316 pp.

[8] Knudsen L. R., “Truncated and higher order differentials”, FSE 1995, Lect. Notes Comput. Sci., 1008, 1995, 196–211 | DOI | Zbl

[9] Pogorelov B. A., Pudovkina M. A., “Razbieniya na bigrammakh i markovost algoritmov blochnogo shifrovaniya”, Matematicheskie voprosy kriptografii, 8:1 (2017), 5–40 | DOI | MR

[10] Pogorelov B. A., Pudovkina M. A., “Naturalnye metriki i ikh svoistva. Ch. 2. Metriki tipa Khemminga”, Matematicheskie voprosy kriptografii, 3:1 (2012), 71–95 | DOI

[11] Nyberg K., Knudsen L. R., “Provable security against differential cryptanalysis”, CRYPTO 1992, Lect. Notes Comput. Sci., 740, 1993, 566–574 | DOI | MR | Zbl

[12] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des. Codes Cryptogr., 49 (2008), 273–288 | DOI | MR | Zbl

[13] Leander G., Abdelraheem M. A., AlKhzaimi H., Zenner E., “A cryptanalysis of PRINTcipher: the invariant subspace attack”, CRYPTO 2011, Lect. Notes Comput. Sci., 6841, 2011, 206–221 | DOI | MR | Zbl

[14] Leander G., Minaud B., Ronjom S., “A generic approach to invariant subspace attacks: cryptanalysis of Robin, iSCREAM and Zorro”, Advances in Cryptology – EUROCRYPT 2015, EUROCRYPT 2015, v. I, Lect. Notes Comput. Sci., 9056, 2015, 254–283 | DOI | MR | Zbl