Characterization of mappings by the nonisometricity property
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 77-116

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integer-valued metric $\mu $ on a vector space over $GF(2)$ we introduce a new measure which characterize the non-coordination between $\mu$ and transformation $g$ of the space. It is called a nonisometric index of transformation $g$. In this paper we deal with metrics which are invariant under a translation group of the vector space over $GF(2)$. For different classes of transformations (including involutions and APN permutations) we find the values of nonisometric indices or their extremal estimates.
@article{MVK_2019_10_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Characterization of mappings by the nonisometricity property},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {77--116},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Characterization of mappings by the nonisometricity property
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 77
EP  - 116
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/
LA  - ru
ID  - MVK_2019_10_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Characterization of mappings by the nonisometricity property
%J Matematičeskie voprosy kriptografii
%D 2019
%P 77-116
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/
%G ru
%F MVK_2019_10_a5
B. A. Pogorelov; M. A. Pudovkina. Characterization of mappings by the nonisometricity property. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 77-116. http://geodesic.mathdoc.fr/item/MVK_2019_10_a5/