On the rank of random binary matrix with fixed weights of independent rows
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 67-76

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random matrix consisting of $n$ independent rows such that each row is equiprobably chosen from the set of all $m$-dimensional ($m>n$) binary vectors with given weights $s_i$, $i=1,\ldots,n$, and study asymptotic properties of the rank of such matrix. We propose explicit upper bound for the distribution function of the rank of matrixes.
@article{MVK_2019_10_a4,
     author = {V. I. Kruglov and V. G. Mikhailov},
     title = {On the rank of random binary matrix with fixed weights of independent rows},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/}
}
TY  - JOUR
AU  - V. I. Kruglov
AU  - V. G. Mikhailov
TI  - On the rank of random binary matrix with fixed weights of independent rows
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 67
EP  - 76
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/
LA  - ru
ID  - MVK_2019_10_a4
ER  - 
%0 Journal Article
%A V. I. Kruglov
%A V. G. Mikhailov
%T On the rank of random binary matrix with fixed weights of independent rows
%J Matematičeskie voprosy kriptografii
%D 2019
%P 67-76
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/
%G ru
%F MVK_2019_10_a4
V. I. Kruglov; V. G. Mikhailov. On the rank of random binary matrix with fixed weights of independent rows. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 67-76. http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/