On the rank of random binary matrix with fixed weights of independent rows
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random matrix consisting of $n$ independent rows such that each row is equiprobably chosen from the set of all $m$-dimensional ($m>n$) binary vectors with given weights $s_i$, $i=1,\ldots,n$, and study asymptotic properties of the rank of such matrix. We propose explicit upper bound for the distribution function of the rank of matrixes.
@article{MVK_2019_10_a4,
     author = {V. I. Kruglov and V. G. Mikhailov},
     title = {On the rank of random binary matrix with fixed weights of independent rows},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/}
}
TY  - JOUR
AU  - V. I. Kruglov
AU  - V. G. Mikhailov
TI  - On the rank of random binary matrix with fixed weights of independent rows
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 67
EP  - 76
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/
LA  - ru
ID  - MVK_2019_10_a4
ER  - 
%0 Journal Article
%A V. I. Kruglov
%A V. G. Mikhailov
%T On the rank of random binary matrix with fixed weights of independent rows
%J Matematičeskie voprosy kriptografii
%D 2019
%P 67-76
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/
%G ru
%F MVK_2019_10_a4
V. I. Kruglov; V. G. Mikhailov. On the rank of random binary matrix with fixed weights of independent rows. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 67-76. http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/

[1] Balakin G. V., “O sluchainykh matritsakh”, Teoriya veroyatn. i ee primen., 12:2 (1967), 346–353 | Zbl

[2] Balakin G. V., “Raspredelenie ranga sluchainykh matrits nad konechnym polem”, Teoriya veroyatn. i ee primen., 13:4 (1968), 631–641

[3] Zubkov A. M., Kruglov V. I., “Momentnye kharakteristiki vesov vektorov v sluchainykh dvoichnykh lineinykh kodakh”, Matematicheskie voprosy kriptografii, 3:4 (2012), 55–70 | DOI

[4] Zubkov A. M., Kruglov V. I., “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov nad ${\rm GF}(p)$”, Matematicheskie voprosy kriptografii, 5:1 (2014), 27–38 | DOI

[5] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Mnogochleny Kravchuka i ikh primeneniya v zadachakh kriptografii i teorii kodirovaniya”, Matematicheskie voprosy kriptografii, 6:1 (2015), 33–56 | DOI | MR

[6] Koblits N., Kurs teorii chisel i kriptografii, Nauchnoe izd-vo TVP, M., 2001

[7] Kovalenko I. N., “O raspredelenii lineinogo ranga sluchainoi matritsy”, Teoriya veroyatn. i ee primen., 17:2 (1972), 354–359 | Zbl

[8] Kovalenko I. N., Levitskaya A. A., Savchuk M. N., Izbrannye zadachi veroyatnostnoi kombinatoriki, Naukova dumka, Kiev, 1986

[9] Kolchin V. F., Sluchainye grafy, FIZMATLIT, M., 2000

[10] Lidl R., Niderraiter G., Konechnye polya, v. 2, Mir, M., 1988 | MR

[11] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[12] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR

[13] Blake I. F., Studholme C., Properties of random matrices and applications, Unpublished report, 2006 http://www.cs.toronto.edu/c̃vs/coding/random_report.pdf

[14] Cooper C., Frieze A., Pegden W., On the rank of a random binary matrix, 2018, arXiv: 1806.04988 [math.CO] | MR

[15] Darling R., Penrose M., Wade A., Zabell S., “Rank deficiency in sparse random $GF[2]$ matrices”, Electron. J. Probab., 19 (2014) | DOI | MR | Zbl

[16] Fulman J., Goldstein L., “Stein's method and the rank distribution of random matrices over finite fields”, Ann, Probab., 43:3 (2015), 1274–1314 | DOI | MR | Zbl

[17] Krasikov I., “Nonnegative quadratic forms and bounds on orthogonal polynomials”, J. Approx. Theory, 111:1 (2001), 31–49 | DOI | MR | Zbl

[18] Salmond D., Grant A., Grivell I., Chan T., On the rank of random matrices over finite fields, 2016, arXiv: 1404.3250 [cs.IT]

[19] Tulino A. M., Verdu S., Random matrix theory and wireless communications, Now Publishers, 2004, 182 pp. | Zbl

[20] Zubkov A. M., Kruglov V. I., “On quantiles of minimal codeword weights of random linear codes over $F_p$”, Matematicheskie voprosy kriptografii, 9:2 (2018), 99–102 | DOI | MR