Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2019_10_a4, author = {V. I. Kruglov and V. G. Mikhailov}, title = {On the rank of random binary matrix with fixed weights of independent rows}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {67--76}, publisher = {mathdoc}, volume = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/} }
TY - JOUR AU - V. I. Kruglov AU - V. G. Mikhailov TI - On the rank of random binary matrix with fixed weights of independent rows JO - Matematičeskie voprosy kriptografii PY - 2019 SP - 67 EP - 76 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/ LA - ru ID - MVK_2019_10_a4 ER -
V. I. Kruglov; V. G. Mikhailov. On the rank of random binary matrix with fixed weights of independent rows. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 67-76. http://geodesic.mathdoc.fr/item/MVK_2019_10_a4/
[1] Balakin G. V., “O sluchainykh matritsakh”, Teoriya veroyatn. i ee primen., 12:2 (1967), 346–353 | Zbl
[2] Balakin G. V., “Raspredelenie ranga sluchainykh matrits nad konechnym polem”, Teoriya veroyatn. i ee primen., 13:4 (1968), 631–641
[3] Zubkov A. M., Kruglov V. I., “Momentnye kharakteristiki vesov vektorov v sluchainykh dvoichnykh lineinykh kodakh”, Matematicheskie voprosy kriptografii, 3:4 (2012), 55–70 | DOI
[4] Zubkov A. M., Kruglov V. I., “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov nad ${\rm GF}(p)$”, Matematicheskie voprosy kriptografii, 5:1 (2014), 27–38 | DOI
[5] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Mnogochleny Kravchuka i ikh primeneniya v zadachakh kriptografii i teorii kodirovaniya”, Matematicheskie voprosy kriptografii, 6:1 (2015), 33–56 | DOI | MR
[6] Koblits N., Kurs teorii chisel i kriptografii, Nauchnoe izd-vo TVP, M., 2001
[7] Kovalenko I. N., “O raspredelenii lineinogo ranga sluchainoi matritsy”, Teoriya veroyatn. i ee primen., 17:2 (1972), 354–359 | Zbl
[8] Kovalenko I. N., Levitskaya A. A., Savchuk M. N., Izbrannye zadachi veroyatnostnoi kombinatoriki, Naukova dumka, Kiev, 1986
[9] Kolchin V. F., Sluchainye grafy, FIZMATLIT, M., 2000
[10] Lidl R., Niderraiter G., Konechnye polya, v. 2, Mir, M., 1988 | MR
[11] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[12] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR
[13] Blake I. F., Studholme C., Properties of random matrices and applications, Unpublished report, 2006 http://www.cs.toronto.edu/c̃vs/coding/random_report.pdf
[14] Cooper C., Frieze A., Pegden W., On the rank of a random binary matrix, 2018, arXiv: 1806.04988 [math.CO] | MR
[15] Darling R., Penrose M., Wade A., Zabell S., “Rank deficiency in sparse random $GF[2]$ matrices”, Electron. J. Probab., 19 (2014) | DOI | MR | Zbl
[16] Fulman J., Goldstein L., “Stein's method and the rank distribution of random matrices over finite fields”, Ann, Probab., 43:3 (2015), 1274–1314 | DOI | MR | Zbl
[17] Krasikov I., “Nonnegative quadratic forms and bounds on orthogonal polynomials”, J. Approx. Theory, 111:1 (2001), 31–49 | DOI | MR | Zbl
[18] Salmond D., Grant A., Grivell I., Chan T., On the rank of random matrices over finite fields, 2016, arXiv: 1404.3250 [cs.IT]
[19] Tulino A. M., Verdu S., Random matrix theory and wireless communications, Now Publishers, 2004, 182 pp. | Zbl
[20] Zubkov A. M., Kruglov V. I., “On quantiles of minimal codeword weights of random linear codes over $F_p$”, Matematicheskie voprosy kriptografii, 9:2 (2018), 99–102 | DOI | MR