On the existence of non-negative bases in subgroups of free groups of Schreier varieties
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a subgroup $H$ of a free group $F(X)$ has a non-negative (with respect to $X$) basis if and only if $H$ is generated by the set of all its non-negative (with respect to $X$) elements. A similar result is proved for subgroups of free Abelian groups.
@article{MVK_2019_10_a3,
     author = {I. A. Kruglov and I. V. Cherednik},
     title = {On the existence of non-negative bases in subgroups of free groups of {Schreier} varieties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/}
}
TY  - JOUR
AU  - I. A. Kruglov
AU  - I. V. Cherednik
TI  - On the existence of non-negative bases in subgroups of free groups of Schreier varieties
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 53
EP  - 65
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/
LA  - ru
ID  - MVK_2019_10_a3
ER  - 
%0 Journal Article
%A I. A. Kruglov
%A I. V. Cherednik
%T On the existence of non-negative bases in subgroups of free groups of Schreier varieties
%J Matematičeskie voprosy kriptografii
%D 2019
%P 53-65
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/
%G ru
%F MVK_2019_10_a3
I. A. Kruglov; I. V. Cherednik. On the existence of non-negative bases in subgroups of free groups of Schreier varieties. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 53-65. http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/

[1] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka. Gl. red. fiz.-mat. lit., M., 1990, 320 pp.

[2] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR

[3] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980, 447 pp.

[4] Magnus V., Karras, A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974, 456 pp.

[5] Neimann Kh., Mnogoobraziya grupp, Mir, M., 1969, 264 pp.

[6] Cherednik I. V., “Neotritsatelnyi bazis reshetki”, Diskretnaya matematika, 26:3 (2014), 127–135 | DOI

[7] Khan B., “Positively generated subgroups of free groups and the Hanna Neumann conjecture”, Contemporary Mathematics, 296, eds. R. Gilman et al., AMS, 2002 | MR | Zbl

[8] Horizons of Combinatorics, eds. Gyori E., Katona G. O. H., Lovasz L., Springer Science Business Media, 2008, 280 pp. | MR

[9] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[10] Neumann P. M., Wiegold J., “Schreier varieties of groups”, Matematika, 12:4 (1968), 42–49 | MR