Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2019_10_a3, author = {I. A. Kruglov and I. V. Cherednik}, title = {On the existence of non-negative bases in subgroups of free groups of {Schreier} varieties}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {53--65}, publisher = {mathdoc}, volume = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/} }
TY - JOUR AU - I. A. Kruglov AU - I. V. Cherednik TI - On the existence of non-negative bases in subgroups of free groups of Schreier varieties JO - Matematičeskie voprosy kriptografii PY - 2019 SP - 53 EP - 65 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/ LA - ru ID - MVK_2019_10_a3 ER -
I. A. Kruglov; I. V. Cherednik. On the existence of non-negative bases in subgroups of free groups of Schreier varieties. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 53-65. http://geodesic.mathdoc.fr/item/MVK_2019_10_a3/
[1] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka. Gl. red. fiz.-mat. lit., M., 1990, 320 pp.
[2] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR
[3] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980, 447 pp.
[4] Magnus V., Karras, A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974, 456 pp.
[5] Neimann Kh., Mnogoobraziya grupp, Mir, M., 1969, 264 pp.
[6] Cherednik I. V., “Neotritsatelnyi bazis reshetki”, Diskretnaya matematika, 26:3 (2014), 127–135 | DOI
[7] Khan B., “Positively generated subgroups of free groups and the Hanna Neumann conjecture”, Contemporary Mathematics, 296, eds. R. Gilman et al., AMS, 2002 | MR | Zbl
[8] Horizons of Combinatorics, eds. Gyori E., Katona G. O. H., Lovasz L., Springer Science Business Media, 2008, 280 pp. | MR
[9] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[10] Neumann P. M., Wiegold J., “Schreier varieties of groups”, Matematika, 12:4 (1968), 42–49 | MR