Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 25-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring of cardinality $q^d$ and characteristic $p^d$, where $q=p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ be an $R$-extension of degree $n$ and $\check{S}$ be an endomorphism ring of the module $_RS$. A sequence $v$ over $S$ with the recursion law $$ \forall i\in\mathbb{N}_0 :\;\;\;v(i+m)= \\psi_{m-1}(v(i+m-1))+...+\psi_0(v(i)),\;\;\;\psi_0,...,\psi_{m-1}\in \check{S},$$ is called a skew LRS over $S$ with a characteristic polynomial $\Psi(x) = x^m - \sum_{j=0}^{m-1}\psi_jx^j$. The maximal period $T(v)$ of such sequence equals $\tau = (q^{mn}-1)p^{d-1}$. In this article we propose some new methods for construction the polynomials $\Psi(x)$, which define the recursion laws of skew linear recurrent sequences of maximal period. These methods are based on the search in $\check{S}[x]$ the divisors for classic Galois polynomials of period $\tau$ over $R$.
@article{MVK_2019_10_a2,
     author = {M. A. Goltvanitsa},
     title = {Methods of construction of skew linear recurrent sequences with maximal period based on the {Galois} polynomials factorization in the ring of matrix polynomials},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {25--51},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a2/}
}
TY  - JOUR
AU  - M. A. Goltvanitsa
TI  - Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 25
EP  - 51
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a2/
LA  - ru
ID  - MVK_2019_10_a2
ER  - 
%0 Journal Article
%A M. A. Goltvanitsa
%T Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
%J Matematičeskie voprosy kriptografii
%D 2019
%P 25-51
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a2/
%G ru
%F MVK_2019_10_a2
M. A. Goltvanitsa. Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 25-51. http://geodesic.mathdoc.fr/item/MVK_2019_10_a2/