Asymptotic properties of the inversion number in colored trees
Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 9-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $b$-ary plane rooted tree $T$ whose vertices are colored independently and equiprobably in $m$ colors labelled with letters of an alphabet $\mathcal{A}=\left\{ A_{1}$ A vertex $u\in T$ is an ancestor of a vertex $v\in T$ ($u\prec v),$ if the path leading along the edges from the root of the tree to the vertex $v$ passes through the vertex $u$. Denote $\text{col}(u)$ the color of the vertex $u.$ The coloring of the pair $u\prec v$ forms an inversion if $\text{col}(u)>\text{col}(v).$ We study the probabilistic characteristics of the total number of inversions in a colored $b$-ary plane rooted tree of a fixed height and the distribution of random variables that are functionals of the number of inversions in the subtrees of such a tree.
@article{MVK_2019_10_a1,
     author = {V. A. Vatutin},
     title = {Asymptotic properties of the inversion number in colored trees},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {9--24},
     publisher = {mathdoc},
     volume = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - Asymptotic properties of the inversion number in colored trees
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 9
EP  - 24
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_a1/
LA  - ru
ID  - MVK_2019_10_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T Asymptotic properties of the inversion number in colored trees
%J Matematičeskie voprosy kriptografii
%D 2019
%P 9-24
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_a1/
%G ru
%F MVK_2019_10_a1
V. A. Vatutin. Asymptotic properties of the inversion number in colored trees. Matematičeskie voprosy kriptografii, Tome 10 (2019), pp. 9-24. http://geodesic.mathdoc.fr/item/MVK_2019_10_a1/

[1] Vatutin V. A., “Predelnye teoremy dlya chisla otrezkov vozrastaniya v sluchainykh perestanovkakh, porozhdaemykh algoritmami sortirovki”, Diskretnaya matematika, 6:1 (1994), 83–99 | Zbl

[2] Vatutin V. A., Mikhailov V. G., “O chisle chtenii sluchainykh neravnoveroyatnykh failov pri ustoichivoi sortirovke”, Diskretnaya matematika, 8:2 (1996), 14–30 | DOI | Zbl

[3] Zubkov A. M., Serov A. A., “Polnoe dokazatelstvo universalnykh neravenstv dlya funktsii raspredeleniya binomialnogo zakona”, Teoriya veroyatn. i ee primen., 57:3 (2012), 597–602 | DOI