Construction of strong elliptic curves suitable for cryptographic applications
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 135-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for the construction of elliptic curves satisfying special requirements is presented. The choice of requirements aims to prevent known attacks on the elliptic curve discrete logarithm problem in special cases. The results of practical experiments are discussed, some parameters of concrete elliptic curves are given.
@article{MVK_2019_10_2_a11,
     author = {A. Yu. Nesterenko},
     title = {Construction of strong elliptic curves suitable for cryptographic applications},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {135--144},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a11/}
}
TY  - JOUR
AU  - A. Yu. Nesterenko
TI  - Construction of strong elliptic curves suitable for cryptographic applications
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 135
EP  - 144
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a11/
LA  - en
ID  - MVK_2019_10_2_a11
ER  - 
%0 Journal Article
%A A. Yu. Nesterenko
%T Construction of strong elliptic curves suitable for cryptographic applications
%J Matematičeskie voprosy kriptografii
%D 2019
%P 135-144
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a11/
%G en
%F MVK_2019_10_2_a11
A. Yu. Nesterenko. Construction of strong elliptic curves suitable for cryptographic applications. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 135-144. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a11/

[1] D. Aranha, P. Barreto, G. Pereira, J. Ricardini, A note on high-security general-purpose elliptic curves, , 2013 http://eprint.iacr.org/2013/647

[2] H. Baier, J. Buchmann, “Efficient construction of cryptographically strong elliptic curves”, INDOCRYPT 2000, Lect. Notes Comput. Sci., 1977, 2000, 191–202 | DOI | MR | Zbl

[3] D. Bernstein, “Curve25519: New Diffie-Hellman speed records”, PKC 2006, Lect. Notes Comput. Sci., 3958, 2006, 207–228 | DOI | MR

[4] D. Bernstein, T. Lange, “Faster addition and doubling on elliptic curves”, ASIACRYPT 2007, Lect. Notes Comput. Sci., 4833, 2007, 29–50 | DOI | MR | Zbl

[5] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, London Math. Soc. Lecture Notes, 265, Cambridge Univ. Press, Cambridge, 1999, 204 pp. | MR | Zbl

[6] D. Chudnovsky, G. Chudnovsky, “Sequences of numbers generated by addition in formal groups and new primality and factorization tests”, Adv. Appl. Math., 7 (1986), 385–434 | DOI | MR | Zbl

[7] D. Cox, Primes of the Form $x^2 + ny^2$: Fermat, Class Field Theory and Complex Multiplication, J. Wiley and Sons, N.Y., etc., 1989, 363 pp. | MR | Zbl

[8] R. Crandal, C. Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005 | MR | Zbl

[9] D. Husemöller, Elliptic Curves, 2nd ed., Springer, Heidelberg etc., 2004 | Zbl

[10] GOST R 34.10-2012. Information technology. Cryptographic data security. Signature and verification processes of [electronic] digital signature, Standardinform, M., 2012

[11] W. Bosma, J. Cannon (eds.), Discovering Mathematics with Magma, Algor. and Comput. in Math., 19, Springer, Heidelberg etc., 2006, 364 pp. | MR | Zbl

[12] A. Menezes, S. Vanstone, T. Okamoto, “Reducing elliptic curve logarithms to logarithms in a finite field”, 23rd ACM Symp. Theory of Computing (1991), 80–89 | MR

[13] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factorization”, Math. Comp., 48:177 (1987), 243–267 | DOI | MR

[14] A. Yu. Nesterenko, “Construction of elliptic curves endomorphisms”, Matematicheskie Voprosy Kriptografii, 5:2 (2014), 99–102 | DOI

[15] A. Yu. Nesterenko, “Some remarks on the elliptic curve discrete logarithm problem”, Matematicheskie Voprosy Kriptografii, 7:2 (2016), 115–120 | DOI | MR

[16] P. C. van Oorschot, M. J. Wiener, “Parallel collision search with cryptanalytic applications”, J. Cryptology, 12:1 (1999), 1–28 | DOI | MR | Zbl

[17] C. Petit, M. Kosters, A. Messeng, “Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields”, PKC 2016, Lect. Notes Comput. Sci., 9615, 2016, 3–18 | DOI | MR | Zbl

[18] V. Popov, I. Kurepkin, S. Leontiev, RFC4357. Additional cryptographic algorithms for use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 algorithms, 2006 https://www.rfc-editor.org/info/rfc4357

[19] J. M. Pollard, “Monte Carlo methods for index computation $\pmod p$”, Math. Comp., 32:143 (1978), 918–924 | MR | Zbl

[20] M. O. Rabin, “Probabilistic algorithm for testing primality”, J. Number Theory, 12:1 (1980), 128–138 | DOI | MR | Zbl

[21] R. L. Rivest, R. D. Silverman, Are “strong” primes needed for RSA?, , 1999, 23 pp. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.310.4183&rep=rep1&type=pdf

[22] T. Satoh, K. Araki, “Fermat quotients and the polynomial time discrete log algorithm for anomalous curves”, Comm. Math. Univ. Sancti Pauli, 47 (1998), 81–92 | MR | Zbl

[23] R. Schoof, “Counting points on elliptic curves over finite fields”, J. Theorie des Nombres de Bordeaux, 7:1 (1995), 219–254 | DOI | MR | Zbl

[24] I. Semaev, “Evaluation of discrete logarithms in a group of ptorsion points of an elliptic curve in characteristic $p$”, Math. Comp., 67:221 (1998), 353–356 | DOI | MR | Zbl

[25] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, Heidelberg etc., 1986, 400 pp. | MR | Zbl

[26] N. Smart, “The discrete logarithm problem on elliptic curves of trace one”, J. Cryptology, 12 (1999), 193–196 | DOI | MR | Zbl

[27] Technical Guideline TR-03111. Elliptic curve cryptography, German Federal Office for Inform. Secur., 2007

[28] E. Teske, “Square-root algorithms for the discrete logarithm problem (a survey)”, Publickey cryptography and computational number theory (Warsaw, 2000), de Gruyter, Berlin, 2001, 283–301 | MR | Zbl