The number of maximal period polynomial mappings over the Galois fields of odd characteristics
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 85-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R = GR(q^n, p^n)$ be a Galois ring of cardinality $q^n$ and characteristics $p^n$, where $q = p^m$, $m, n > 1$. Let the sequence $U = \{u_i\}$ is defined by equations $u_{i+1} = f(u_i)$, $i \in \mathbb N_0$, and $f$ be a polynomial mapping of the ring $R$. It was proved earlier that the maximal possible period of $U$ equals $q(q-1)p^{n-2}$. Here we find the number of polynomial mappings over $R$ having maximal possible periods for $p\ne2$.
@article{MVK_2018_9_a4,
     author = {D. M. Ermilov},
     title = {The number of maximal period polynomial mappings over the {Galois} fields of odd characteristics},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a4/}
}
TY  - JOUR
AU  - D. M. Ermilov
TI  - The number of maximal period polynomial mappings over the Galois fields of odd characteristics
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 85
EP  - 100
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a4/
LA  - ru
ID  - MVK_2018_9_a4
ER  - 
%0 Journal Article
%A D. M. Ermilov
%T The number of maximal period polynomial mappings over the Galois fields of odd characteristics
%J Matematičeskie voprosy kriptografii
%D 2018
%P 85-100
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a4/
%G ru
%F MVK_2018_9_a4
D. M. Ermilov. The number of maximal period polynomial mappings over the Galois fields of odd characteristics. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 85-100. http://geodesic.mathdoc.fr/item/MVK_2018_9_a4/

[1] Anashin V. S., “O gruppakh i koltsakh, obladayuschikh tranzitivnymi polinomami”, XVI Vsesoyuznaya algebr. konf., Tezisy (Leningrad, 1981), v. 2, 4–5

[2] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh tsisel”, Diskretnaya matematika, 14:4 (2002), 1–63 | DOI

[3] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2000), 20–32 | DOI

[4] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57 | DOI

[5] Ermilov D. M., Kozlitin O. A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 6:3 (2015), 47–73 | DOI

[6] Ermilov D. M., “Algoritm postroeniya sistem predstavitelei tsiklov maksimalnoi dliny polinomialnykh podstanovok nad koltsom Galua”, Prikl. diskr. matem. Prilozhenie, 2014, no. 7, 64–67

[7] Ermilov D. M., “Svoistva polinomialnykh generatorov s vykhodnoi posledovatelnostyu naibolshego perioda nad koltsom Galua”, Prikl. diskr. matem., 27:1 (2015), 52–61

[8] Kozlitin O. A., “Otsenka dliny maksimalnogo tsikla v grafe polinomialnogo preobrazovaniya koltsa Galua–Eizenshteina”, Diskretnaya matematika, 29:4 (2017), 41–58 | DOI

[9] Viktorenkov V. E., “O stroenii orgrafov polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23 | DOI

[10] Parvatov N. G., “On the period length of vector sequences generated by polynomials modulo prime powers”, Prikl. diskr. matem., 31:1 (2016), 57–61 | MR

[11] Elizarov V. P., Konechnye koltsa, Gelios-ARV, M., 2006, 304 pp.

[12] Nechaev A. A., “Polinomialnye preobrazovaniya konechnykh kommutativnykh kolets glavnykh idealov”, Matem. zametki, 27:7 (1980), 885–899

[13] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, 2-e izd., ispr. i dop., Lan, SPb., 2015, 608 pp.

[14] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 822 pp.