Application of the lattice theory to the analysis of digital signature schemes
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the use of lattice theory four attacks on digital signature schemes described in the national standard GOST R 34.10-2012 are analysed. These attacks are based on the lattice theory. Upper asymptotic bounds for the probability of successful implementation are obtained. A conclusion is made that the considered attacks are unable to lower the security estimate of the Russian standardized signature scheme.
@article{MVK_2018_9_a3,
     author = {A. M. Guselev},
     title = {Application of the lattice theory to the analysis of digital signature schemes},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a3/}
}
TY  - JOUR
AU  - A. M. Guselev
TI  - Application of the lattice theory to the analysis of digital signature schemes
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 73
EP  - 84
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a3/
LA  - ru
ID  - MVK_2018_9_a3
ER  - 
%0 Journal Article
%A A. M. Guselev
%T Application of the lattice theory to the analysis of digital signature schemes
%J Matematičeskie voprosy kriptografii
%D 2018
%P 73-84
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a3/
%G ru
%F MVK_2018_9_a3
A. M. Guselev. Application of the lattice theory to the analysis of digital signature schemes. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 73-84. http://geodesic.mathdoc.fr/item/MVK_2018_9_a3/

[1] Blake I. F., Garefalakis T., “On the security of the digital signature algorithm”, Des. Codes Cryptogr., 26:1–3 (2002), 87–96 | DOI | MR | Zbl

[2] Draziotis K., Poulakis D., “Lattice attacks on DSA schemes based on Lagrange's algorithm”, Lect. Notes Comput. Sci., 8080, 2013, 119–131 | DOI | MR | Zbl

[3] Faugere J.-L., Goyet C., Renault G., “Attacking (EC)DSA given only an implicit hint”, SAC 2012, Lect. Notes Comput. Sci., 7707, 2013, 252–274 | DOI | Zbl

[4] Horster P., Michels M., Petersen H., “Generalized El-Gamal signature schemes for one message block”, Proc. 2nd Int. Workshop on IT-Security (1994), 66–81

[5] Howgrave-Graham N. A., Smart N. P., “Lattice attacks on digital signature schemes”, Des. Codes Cryptogr., 23 (2001), 283–290 | DOI | MR | Zbl

[6] Lenstra A. K., Lenstra H. W. Jr., Lovasz L., “Factoring polynomials with rational coefficients”, Math. Ann., 261 (1982), 513–534 | DOI | MR

[7] Goldwasser S., Bellare M., Micciancio D., “'Pseudo-random' number generation within cryptographic algorithms: the DSS case”, Lect. Notes Comput. Sci., 1294, 1997, 277–291 | DOI | Zbl

[8] Micciancio D., Voulgaris P., “A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations”, SIAM J. Comput., 42:3 (2013), 1364–1391 | DOI | MR | Zbl

[9] Nguyen P., Shparlinski I. E., “The insecurity of the digital signature algorithm with partially known nonces”, J. Cryptology, 15 (2002), 151–176 | DOI | MR | Zbl

[10] Nguyen P., Shparlinski I. E., “The insecurity of the elliptic curve digital signature algorithm with partially known nonces”, Des. Codes Cryptogr., 30:2 (2003), 201–217 | DOI | MR | Zbl

[11] Digital signature standard, FIPS Publication 186, National Institute of Standards and Technology (NIST), May 1994

[12] Poulakis D., “Some lattice attacks on DSA and ECDSA”, Appl. Algebra Eng., Commun. and Comput., 22 (2011), 347–358 | DOI | MR | Zbl

[13] Poulakis D., “New lattice attacks on DSA schemes”, J. Math. Cryptology, 10:2 (2016), 135–144 | DOI | MR | Zbl

[14] Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Protsessy formirovaniya i proverki elektronnoi tsifrovoi podpisi, Natsionalnyi standart Rossiiskoi Federatsii. GOST R 34.10-2012, Federalnoe agentstvo po tekhnicheskomu regulirovaniyu i metrologii, M., 2012