Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2018_9_a2, author = {V. A. Vatutin}, title = {Conditional limit theorem for the near critical branching processes with final type of particles}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {53--72}, publisher = {mathdoc}, volume = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/} }
TY - JOUR AU - V. A. Vatutin TI - Conditional limit theorem for the near critical branching processes with final type of particles JO - Matematičeskie voprosy kriptografii PY - 2018 SP - 53 EP - 72 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/ LA - ru ID - MVK_2018_9_a2 ER -
V. A. Vatutin. Conditional limit theorem for the near critical branching processes with final type of particles. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 53-72. http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/
[1] Afanasev V. I., “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskretnaya matematika, 27:2 (2015), 22–44 | DOI
[2] Afanasev V. I., “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Trudy Matem. in-ta RAN, 294, 2016, 7–19 | DOI | Zbl
[3] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Matem. zametki, 103:3 (2018), 323–335 | DOI | Zbl
[4] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I. Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI
[5] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. II. Funktsionalnye predelnye teoremy”, Teoriya veroyatn. i ee primen., 60:1 (2015), 25–44 | DOI
[6] Vatutin V. A., “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matem. zametki, 101:5 (2017), 669–683 | DOI | Zbl
[7] Vatutin V. A., Dyakonova E. E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Trudy Matem. in-ta RAN, 290, 2015, 114–135 | DOI | Zbl
[8] Vatutin V. A., Dyakonova E. E., “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 28:4 (2015), 26–37 | DOI | Zbl
[9] Smadi Ch., Vatutin V. A., “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR | Zbl
[10] Vatutin V. A., Sagitov S. M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Trudy Matem. in-ta AN SSSR, 177, 1986, 3–20 | Zbl
[11] Zubkov A. M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228–238 | Zbl
[12] Savin A. A., Chistyakov V. P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 7:1 (1962), 95–104 | Zbl
[13] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[14] Pakes A. G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3:1 (1971), 176–192 | DOI | MR | Zbl
[15] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46 (1978), 13–43 | DOI | MR | Zbl
[16] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton-Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108 | DOI
[17] Pilshchikov D. V., “On the limiting mean values in probabilistic models of time-memory-data tradeoff methods”, Matematicheskie voprosy kriptografii, 6:2 (2015), 59–65 | DOI | MR
[18] Pilschikov D. V., “Analiz slozhnosti algoritma parallelnogo poiska «zolotoi» kollizii”, Matematicheskie voprosy kriptografii, 6:4 (2015), 77–97 | DOI
[19] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976, 576 pp.
[20] Montel P., Normalnye semeistva analiticheskikh funktsii, ONTI, M.–L., 1936, 240 pp.
[21] Sveshnikov A. G., Tikhonov A. N., Teoriya funktsii kompleksnoi peremennoi, Nauka, M., 1970, 319 pp.
[22] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1976, 400 pp.