Conditional limit theorem for the near critical branching processes with final type of particles
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 53-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A limit theorem is proved for the distribution of the number of particles in the near critical branching processes with final type of particles conditioned on the survival of the processes up to a distant moment.
@article{MVK_2018_9_a2,
     author = {V. A. Vatutin},
     title = {Conditional limit theorem for the near critical branching processes with final type of particles},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {53--72},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - Conditional limit theorem for the near critical branching processes with final type of particles
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 53
EP  - 72
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/
LA  - ru
ID  - MVK_2018_9_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T Conditional limit theorem for the near critical branching processes with final type of particles
%J Matematičeskie voprosy kriptografii
%D 2018
%P 53-72
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/
%G ru
%F MVK_2018_9_a2
V. A. Vatutin. Conditional limit theorem for the near critical branching processes with final type of particles. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 53-72. http://geodesic.mathdoc.fr/item/MVK_2018_9_a2/

[1] Afanasev V. I., “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskretnaya matematika, 27:2 (2015), 22–44 | DOI

[2] Afanasev V. I., “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Trudy Matem. in-ta RAN, 294, 2016, 7–19 | DOI | Zbl

[3] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Matem. zametki, 103:3 (2018), 323–335 | DOI | Zbl

[4] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I. Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI

[5] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. II. Funktsionalnye predelnye teoremy”, Teoriya veroyatn. i ee primen., 60:1 (2015), 25–44 | DOI

[6] Vatutin V. A., “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matem. zametki, 101:5 (2017), 669–683 | DOI | Zbl

[7] Vatutin V. A., Dyakonova E. E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Trudy Matem. in-ta RAN, 290, 2015, 114–135 | DOI | Zbl

[8] Vatutin V. A., Dyakonova E. E., “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 28:4 (2015), 26–37 | DOI | Zbl

[9] Smadi Ch., Vatutin V. A., “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR | Zbl

[10] Vatutin V. A., Sagitov S. M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Trudy Matem. in-ta AN SSSR, 177, 1986, 3–20 | Zbl

[11] Zubkov A. M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228–238 | Zbl

[12] Savin A. A., Chistyakov V. P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 7:1 (1962), 95–104 | Zbl

[13] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.

[14] Pakes A. G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3:1 (1971), 176–192 | DOI | MR | Zbl

[15] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46 (1978), 13–43 | DOI | MR | Zbl

[16] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton-Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108 | DOI

[17] Pilshchikov D. V., “On the limiting mean values in probabilistic models of time-memory-data tradeoff methods”, Matematicheskie voprosy kriptografii, 6:2 (2015), 59–65 | DOI | MR

[18] Pilschikov D. V., “Analiz slozhnosti algoritma parallelnogo poiska «zolotoi» kollizii”, Matematicheskie voprosy kriptografii, 6:4 (2015), 77–97 | DOI

[19] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976, 576 pp.

[20] Montel P., Normalnye semeistva analiticheskikh funktsii, ONTI, M.–L., 1936, 240 pp.

[21] Sveshnikov A. G., Tikhonov A. N., Teoriya funktsii kompleksnoi peremennoi, Nauka, M., 1970, 319 pp.

[22] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1976, 400 pp.