Parameters of a class of functions over a finite field
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 31-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of functions defined on a finite field $GF(q)$ and constructed by means of linear recurrent sequences over the Galois ring $GR(q^n, p^n)$. For this class we investigate: the distances between functions, the distance to the class of affine functions, the number of constructed functions and the number of preimages of elements under action of functions. It is shown that the functions are significantly distant from the class of all affine functions.
@article{MVK_2018_9_a1,
     author = {A. D. Bugrov and O. V. Kamlovskii},
     title = {Parameters of a class of functions over a finite field},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/}
}
TY  - JOUR
AU  - A. D. Bugrov
AU  - O. V. Kamlovskii
TI  - Parameters of a class of functions over a finite field
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 31
EP  - 52
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/
LA  - ru
ID  - MVK_2018_9_a1
ER  - 
%0 Journal Article
%A A. D. Bugrov
%A O. V. Kamlovskii
%T Parameters of a class of functions over a finite field
%J Matematičeskie voprosy kriptografii
%D 2018
%P 31-52
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/
%G ru
%F MVK_2018_9_a1
A. D. Bugrov; O. V. Kamlovskii. Parameters of a class of functions over a finite field. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 31-52. http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/