Parameters of a class of functions over a finite field
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 31-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of functions defined on a finite field $GF(q)$ and constructed by means of linear recurrent sequences over the Galois ring $GR(q^n, p^n)$. For this class we investigate: the distances between functions, the distance to the class of affine functions, the number of constructed functions and the number of preimages of elements under action of functions. It is shown that the functions are significantly distant from the class of all affine functions.
@article{MVK_2018_9_a1,
     author = {A. D. Bugrov and O. V. Kamlovskii},
     title = {Parameters of a class of functions over a finite field},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/}
}
TY  - JOUR
AU  - A. D. Bugrov
AU  - O. V. Kamlovskii
TI  - Parameters of a class of functions over a finite field
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 31
EP  - 52
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/
LA  - ru
ID  - MVK_2018_9_a1
ER  - 
%0 Journal Article
%A A. D. Bugrov
%A O. V. Kamlovskii
%T Parameters of a class of functions over a finite field
%J Matematičeskie voprosy kriptografii
%D 2018
%P 31-52
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/
%G ru
%F MVK_2018_9_a1
A. D. Bugrov; O. V. Kamlovskii. Parameters of a class of functions over a finite field. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 31-52. http://geodesic.mathdoc.fr/item/MVK_2018_9_a1/

[1] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Uchebnoe posobie, Gelios ARV, M., 2001, 480 pp.

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | Zbl

[3] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[4] Rueppel R. A., Analysis and design of stream ciphers, Springer-Verlag, Berlin, 1986, 244 pp. | MR | Zbl

[5] Shparlinski I. E., Winterhof A., “On the nonlinearity of linear recurrence sequences”, Appl. Math. Letters, 19:4 (2006), 340–344 | DOI | MR | Zbl

[6] Lathtonen L., Ling S., Sole P., Zinoviev D., “$\mathbf{A}_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318–330 | DOI | MR

[7] Sole P., Zinoviev D., “Galois rings and pseudorandom sequences”, Lect. Notes Comput. Sci., 4887, 2007, 16–33 | DOI | MR | Zbl

[8] Bylkov D. N., Kamlovskii O. V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matematicheskie voprosy kriptografii, 3:4 (2012), 25–53 | DOI

[9] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 59–60

[10] Kamlovskii O. V., “Rasstoyanie mezhdu dvoichnymi predstavleniyami lineinykh rekurrent nad polem $GF(2^k)$ i koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 7:1 (2016), 73–84 | DOI | Zbl

[11] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139

[12] McDonald B. R., Finite rings with identity, Dekker, New York, 1974, 429 pp. | MR | Zbl

[13] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56 | Zbl

[14] Laksov D., “Lineinye rekurrentnye posledovatelnosti nad konechnymi polyami”, Matematika. Sb. perev., 11:6 (1967), 145–158

[15] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 822 pp.

[16] Golomb S. W., Gong G., Signal design for good correlation. For wireless communication, Cryptography, and radar, Cambridge Univ. Press, Cambridge, U.K., 2005, 438 pp. | MR | Zbl

[17] Keipers L., Niderraiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985, 408 pp.

[18] B.A. Pogorelov, V.N. Sachkov (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 92 pp.

[19] Solodovnikov V. I., “O sovpadenii klassa bent-funktsii s klassom funktsii, minimalno blizkikh k lineinym”, Prikladnaya diskretnaya matematika, 2012, no. 3 (17), 25–33

[20] Bugrov A. D., “Kusochno-affinnye podstanovki konechnykh polei”, Prikladnaya diskretnaya matematika, 2015, no. 4 (30), 5–23

[21] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sb., 200:4 (2009), 31–52 | DOI | Zbl

[22] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2000), 99–113 | DOI

[23] Kamlovskii O. V., “Spektralnyi metod otsenki chisla reshenii sistem nelineinykh uravnenii s lineinymi rekurrentnymi argumentami”, Diskretnaya matematika, 28:2 (2016), 27–43 | DOI

[24] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matematika, 6:4 (2000), 1083–1094 | Zbl

[25] Bylkov D. N., “Klass uslozhnenii lineinykh rekurrent nad koltsom Galua, ne privodyaschii k potere informatsii”, Problemy peredachi informatsii, 46:3 (2010), 51–59

[26] Kamlovskii O. V., “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN. Ser. matem., 77:6 (2013), 71–96 | DOI | Zbl