Application of non-associative structures to the construction of public key distribution algorithms
Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 5-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the possibility of using non-associative groupoids to construct public key distribution algorithms generalizing the Diffie–Hellmann algorithm. A class of non-associative groupoids satisfying the power permutability property is founded. For this class the complexity of computing powers of an element and the complexity of discrete logarithm problem, including the possible usage of hypothetical quantum computer.
@article{MVK_2018_9_a0,
     author = {A. V. Baryshnikov and S. Yu. Katyshev},
     title = {Application of non-associative structures to the construction of public key distribution algorithms},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_a0/}
}
TY  - JOUR
AU  - A. V. Baryshnikov
AU  - S. Yu. Katyshev
TI  - Application of non-associative structures to the construction of public key distribution algorithms
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 5
EP  - 30
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_a0/
LA  - ru
ID  - MVK_2018_9_a0
ER  - 
%0 Journal Article
%A A. V. Baryshnikov
%A S. Yu. Katyshev
%T Application of non-associative structures to the construction of public key distribution algorithms
%J Matematičeskie voprosy kriptografii
%D 2018
%P 5-30
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_a0/
%G ru
%F MVK_2018_9_a0
A. V. Baryshnikov; S. Yu. Katyshev. Application of non-associative structures to the construction of public key distribution algorithms. Matematičeskie voprosy kriptografii, Tome 9 (2018), pp. 5-30. http://geodesic.mathdoc.fr/item/MVK_2018_9_a0/

[1] Belyavskaya G. B., Tabarov A. Kh., “Tozhdestva s podstanovkami, privodyaschie k lineinosti kvazigrupp”, Diskretnaya matematika, 21:1 (2009), 36–51 | DOI | Zbl

[2] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikl. diskr. matem., 2008, no. 2(2), 28–32

[3] Gribov A. V., “Gomomorfnost nekotorykh kriptograficheskikh sistem na osnove neassotsiativnykh struktur”, Fundam. i prikl. matem., 20:1 (2015), 135–143

[4] Kaie F., Laflamm R., Moska M., Vvedenie v kvantovye vychisleniya, Per. s angl., Mir, M., 2009, 337 pp.

[5] Katyshev S. Yu., “Algoritm diskretnogo logarifmirovaniya na kvazigruppakh, lineinykh nad abelevoi gruppoi”, Obozr. prikl. i promyshl. matem., 17:6 (2011), 894–895

[6] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya otkrytogo raspredeleniya klyuchei”, Diskretnaya matematika, 46:3 (2014), 51–59 | Zbl

[7] Vyalyi M., Kitaev A., Shen A., Klassicheskie i kvantovye vychisleniya, MTsNMO, M., 1999, 192 pp.

[8] Koblits N., Kurs teorii chisel v kriptografii, TVP, M., 2001, 254 pp.

[9] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Kriptograficheskie algoritmy na gruppakh i algebrakh”, Fundam. i prikl. matem., 20:1 (2015), 205–222

[10] Nilsen M., Chang I., Kvantovye vychisleniya i kvantovaya informatsiya, Per. s angl., Mir, M., 2006, 824 pp.

[11] Romankov V. A., Algebraicheskaya kriptografiya, monografiya, Izd-vo OmGU, Omsk, 2013, 136 pp.

[12] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, 22:6 (1976), 644–654 | DOI | MR | Zbl

[13] Habeeb M., Kahrobaei D., Koupparis C., Shpilrain V., “Public key exchange using semidirect product of (semi)groups”, Lect. Notes Comput. Sci., 7954, 2013, 475–486 | DOI | Zbl

[14] Hellman M., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inf. Theory, 26:4 (1980), 401–406 | DOI | MR | Zbl

[15] Kahrobaei D., Shpilrain V., Using semidirect product of (semi)groups in public key cryptography, Cryptology ePrint Archive, Report 2016/378 | MR

[16] Katyshev S. Yu., Markov V. T., Nechaev A. A., “On constructing open key cryptosystems using non associative structures”, VI Int. Conf. Non Assoc. Algebra and Appl. (Spain, Zaragoza, 2011)

[17] Shor P., “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. 35th Ann. IEEE Symp. Found. Comput. Sci., 1994, 124–134 | DOI | MR