The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra.~II
Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 135-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the description of permutation groups over the set of binary $n$-dimensional vectors which stabilizes classes of Boolean functions of $n$ variables from the Galois-closed subalgebras of the Sсhaefer algebra.
@article{MVK_2017_8_a6,
     author = {A. V. Tarasov},
     title = {The stabilizers of certain families of {Boolean} functions of $n$ variables that form a {Galois-closed} subalgebra of the {Schaefer} {algebra.~II}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_a6/}
}
TY  - JOUR
AU  - A. V. Tarasov
TI  - The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra.~II
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 135
EP  - 156
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_a6/
LA  - ru
ID  - MVK_2017_8_a6
ER  - 
%0 Journal Article
%A A. V. Tarasov
%T The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra.~II
%J Matematičeskie voprosy kriptografii
%D 2017
%P 135-156
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_a6/
%G ru
%F MVK_2017_8_a6
A. V. Tarasov. The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra.~II. Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 135-156. http://geodesic.mathdoc.fr/item/MVK_2017_8_a6/

[1] Gorshkov S. P., Tarasov A. V., “O maksimalnykh gruppakh invariantnykh preobrazovanii multiaffinnykh, biyunktivnykh, slabo polozhitelnykh i slabo otritsatelnykh bulevykh funktsii”, Diskretnaya matematika, 21:2 (2009), 94–101 | DOI | Zbl

[2] Tarasov A. V., “Stabilizatory nekotorykh semeistv bulevykh funktsii ot $n$ peremennykh, obrazuyuschikh Galua-zamknutye podalgebry algebry Shefera”, Matematicheskie voprosy kriptografii, 6:4 (2015), 79–105 | MR

[3] Litvinenko V. S., Tarasov A. V., “Klassy Shefera, klassy Posta i sootvetstviya Galua”, Matematicheskie voprosy kriptografii, 6:1 (2015), 81–108 | MR

[4] Tarasov A. V., “Obobschenie kriteriya biyunktivnosti Shefera”, Diskretnaya matematika, 24:2 (2012), 91–99 | DOI | MR

[5] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya klassov Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR | Zbl

[6] Marchenkov S. S., “Invarianty klassov Posta”, Fundam. i prikl. matem., 4:4 (1998), 1385–1404 | MR | Zbl

[7] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2001, 126 pp. | MR

[8] Pogorelov B. A., Osnovy teorii grupp podstanovok, v. 1, Obschie voprosy, M., 1986

[9] Kaluzhnin L. A., Klin M. Kh., Suschanskii V. I., “Eksponentsirovanie grupp podstanovok, I”, Izvestiya VUZov. Matematika, 1979, no. 8(207), 26–33 | MR | Zbl

[10] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9 (2006), 190–219

[11] Gorshkov S. P., Tarasov A. V., Slozhnost resheniya sistem bulevykh uravnenii, Kurs, M., 2017, 192 pp.