The sum of modules of Walsh coefficients for some balanced Boolean functions
Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 75-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following balanced Boolean functions: a) constructed from normal bent-function by the Dobbertin method, b) majority function, c) functions whose units values are located consequentially in the truth table. Exact formulas and bounds for sums of modules of Walsh coefficients are obtained.
@article{MVK_2017_8_a3,
     author = {O. V. Kamlovskii},
     title = {The sum of modules of {Walsh} coefficients for some balanced {Boolean} functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {75--98},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - The sum of modules of Walsh coefficients for some balanced Boolean functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 75
EP  - 98
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/
LA  - ru
ID  - MVK_2017_8_a3
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T The sum of modules of Walsh coefficients for some balanced Boolean functions
%J Matematičeskie voprosy kriptografii
%D 2017
%P 75-98
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/
%G ru
%F MVK_2017_8_a3
O. V. Kamlovskii. The sum of modules of Walsh coefficients for some balanced Boolean functions. Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 75-98. http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/