The sum of modules of Walsh coefficients for some balanced Boolean functions
Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 75-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following balanced Boolean functions: a) constructed from normal bent-function by the Dobbertin method, b) majority function, c) functions whose units values are located consequentially in the truth table. Exact formulas and bounds for sums of modules of Walsh coefficients are obtained.
@article{MVK_2017_8_a3,
     author = {O. V. Kamlovskii},
     title = {The sum of modules of {Walsh} coefficients for some balanced {Boolean} functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {75--98},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - The sum of modules of Walsh coefficients for some balanced Boolean functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 75
EP  - 98
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/
LA  - ru
ID  - MVK_2017_8_a3
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T The sum of modules of Walsh coefficients for some balanced Boolean functions
%J Matematičeskie voprosy kriptografii
%D 2017
%P 75-98
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/
%G ru
%F MVK_2017_8_a3
O. V. Kamlovskii. The sum of modules of Walsh coefficients for some balanced Boolean functions. Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 75-98. http://geodesic.mathdoc.fr/item/MVK_2017_8_a3/

[1] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.

[2] Kamlovskii O. V., “Kolichestvo poyavlenii elementov v vykhodnykh posledovatelnostyakh filtruyuschikh generatorov”, Prikladnaya diskretnaya matematika, 2013, no. 3(21), 11–25

[3] Kamlovskii O. V., “Kolichestvo poyavlenii vektorov na tsiklakh vykhodnykh posledovatelnostei dvoichnykh kombiniruyuschikh generatorov”, Problemy peredachi informatsii, 53:1 (2017), 92–100

[4] De La Krus Khimenes R. A., Kamlovskii O. V., “Summy modulei koeffitsientov Uolsha–Adamara bulevykh funktsii”, Diskretnaya matematika, 27:4 (2015), 49–66 | DOI

[5] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, Lect. Notes Comput. Sci., 1008, 1995, 61–74 | DOI | Zbl

[6] McFarland R. L., “A family of noncyclic difference sets”, J. Comb. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl

[7] Carlet C., “A large class of cryptographic Boolean functions via a study of the Maiorana–McFarland construction”, Lect. Notes Comput. Sci., 2442, 2002, 549–564 | DOI | MR | Zbl

[8] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding nonnormal bent functions”, Discrete Appl. Math., 154:2 (2006), 202–218 | DOI | MR | Zbl

[9] Dalai D. K., Maitra S., Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, codes and cryptography, 40:1 (2006), 41–58 | DOI | MR | Zbl

[10] Titswort R. C., Correlation properties of cyclic sequences, Calif. Inst. Technol., 1962, 244 pp.

[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973, 296 pp.

[12] Bogonatov R. V., “Rang summy dvukh rekurrent maksimalnogo perioda nad $\mathbb{Z}_{2^n}$”, Obozrenie prikl. i promyshl. matem., 16:6 (2009), 1027–1028