Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2017_8_a2, author = {A. M. Zubkov and V. O. Mironkin}, title = {Distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {63--74}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_a2/} }
TY - JOUR AU - A. M. Zubkov AU - V. O. Mironkin TI - Distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping JO - Matematičeskie voprosy kriptografii PY - 2017 SP - 63 EP - 74 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2017_8_a2/ LA - ru ID - MVK_2017_8_a2 ER -
%0 Journal Article %A A. M. Zubkov %A V. O. Mironkin %T Distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping %J Matematičeskie voprosy kriptografii %D 2017 %P 63-74 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MVK_2017_8_a2/ %G ru %F MVK_2017_8_a2
A. M. Zubkov; V. O. Mironkin. Distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping. Matematičeskie voprosy kriptografii, Tome 8 (2017), pp. 63-74. http://geodesic.mathdoc.fr/item/MVK_2017_8_a2/
[1] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984
[2] Zubkov A. M., “Vychislenie raspredeleniya kharakteristik chisla komponent i tsiklicheskikh tochek sluchainogo otobrazheniya”, Matematicheskie voprosy kriptografii, 1:2 (2010), 5–18
[3] Mironkin V. O., “Issledovanie svoistv i kharakteristik stepeni sluchainogo otobrazheniya”, Obozrenie prikl. i promyshl. matem., 21:1 (2014), 70–73
[4] Mironkin V. O., “Ob osobennostyakh stroeniya grafa stepeni sluchainogo otobrazheniya”, Obozrenie prikl. i promyshl. matem., 23:1 (2016), 57–62 | Zbl
[5] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978
[6] Stepanov V. E., “Predelnye raspredeleniya nekotorykh kharakteristik sluchainykh otobrazhenii”, Teoriya veroyatn. i ee primen., 14:4 (1969), 639–653
[7] Tokareva N. N., Simmetrichnaya kriptografiya, Kratkii kurs: uchebnoe posobie, Novosib. gos. un-t, Novosibirsk, 2012, 234 pp.
[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, 2-e izd., Mir, M., 1964
[9] Flajolet P., Odlyzko A., “Random mapping statistics”, Lect. Notes Comput. Sci., 434, 1989, 329–354 | DOI | MR
[10] Harris B., “Probability distributions related to random mapping”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl
[11] Dalal A., Schmutz E., “Compositions of random functions on a finite set”, Electr. J. Comb., 9 (2002), R26 | MR | Zbl
[12] Goh W. M. Y., Hitczenko P., Schmutz E., Iterating random functions on a finite set, 2012, 7 pp., arXiv: math/0207276v2
[13] Kingman J. F. C., “The coalescent”, Stoch. Proc. Appl., 13 (235–248), 1982 | MR | Zbl
[14] McSweeney J. K., Pittel B. G., “Expected coalescence time for a nonuniform allocation process”, Adv. Appl. Probab., 40:4 (2008), 1002–1032 | DOI | MR | Zbl
[15] Hellman M. E., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inf. Theory, 1980, 401–406 | DOI | MR | Zbl
[16] Hong J., Ma D., “Success probability of the Hellman trade-off”, Inf. Process. Lett., 109:7 (2009), 347–351 | DOI | MR | Zbl
[17] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, Lect. Notes Comput. Sci., 2729, 2003, 617–630 | DOI | MR | Zbl
[18] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108
[19] Pilshchikov D. V., “On the limiting mean values in probabilistic models of time-memory-data tradeoff methods”, Matematicheskie voprosy kriptografii, 6:2 (2015), 59–65 | MR
[20] Pilschikov D. V., “Asimptoticheskoe povedenie moschnosti polnogo proobraza sluchainogo mnozhestva pri iteratsiyakh otobrazhenii konechnogo mnozhestva”, Matematicheskie voprosy kriptografii, 8:1 (2017), 95–106
[21] Mironkin V. O., “O nekotorykh veroyatnostnykh kharakteristikakh algoritma vyrabotki klyucha «CRYPTOPRO KEY MESHING»”, Problemy informatsionnoi bezopasnosti. Kompyuternye sistemy, 2015, no. 4, 140–146
[22] Zubkov A. M., Serov A. A., “Sovokupnost obrazov podmnozhestva konechnogo mnozhestva pri iteratsiyakh sluchainykh otobrazhenii”, Diskretnaya matematika, 26:4 (2014), 43–50 | DOI
[23] Serov A. A., “Obrazy konechnogo mnozhestva pri iteratsiyakh dvukh sluchainykh zavisimykh otobrazhenii”, Diskretnaya matematika, 27:4 (2015), 133–140 | DOI
[24] Zubkov A. M., Serov A. A., “Predelnaya teorema dlya moschnosti obraza podmnozhestva pri kompozitsii sluchainykh otobrazhenii”, Diskretnaya matematika, 29:1 (2017), 17–26 | DOI