On subsequences of Markov sequences
Matematičeskie voprosy kriptografii, Tome 7 (2016), pp. 133-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

In some cryptosystems the complication of sequence structure is realized by means of the shrinking generator. In the paper we consider a model of shrinking generator as a subsequence (imbedded chain) of a Markov chain.
@article{MVK_2016_7_a8,
     author = {D. V. Shuvaev},
     title = {On subsequences of {Markov} sequences},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_a8/}
}
TY  - JOUR
AU  - D. V. Shuvaev
TI  - On subsequences of Markov sequences
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 133
EP  - 142
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_a8/
LA  - ru
ID  - MVK_2016_7_a8
ER  - 
%0 Journal Article
%A D. V. Shuvaev
%T On subsequences of Markov sequences
%J Matematičeskie voprosy kriptografii
%D 2016
%P 133-142
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_a8/
%G ru
%F MVK_2016_7_a8
D. V. Shuvaev. On subsequences of Markov sequences. Matematičeskie voprosy kriptografii, Tome 7 (2016), pp. 133-142. http://geodesic.mathdoc.fr/item/MVK_2016_7_a8/

[1] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR

[2] Coppersmith D., Krawczyk H., Mansour Y., “The Shrinking Generator”, Advances in Cryptology-Crypto'93, ed. Stinson D. R., Springer, Heidelberg etc., 1994, 22–39 | MR | Zbl

[3] Krawczyk H., “The Shrinking Generator: Some Practical Considerations”, Fast Software Encryption, Cambridge Security Workshop Proceedings, 1994, 45–46 | DOI | MR | Zbl

[4] Golić J. D., O'Connor L., “Embedding and probabilistic correlation attacks on clock-controlled shift registers”, Advances in Cryptology-Eurocrypt'94, 1995, 230–343 | MR

[5] Cardell S. D., Fuster-Sabater A., “Cryptanalysing the shrinking generator”, Procedia Computer Science, 51:1 (2015), 2893–2897 | DOI

[6] Chzhun Kai-Lai, Odnorodnye tsepi Markova, Mir, M., 1964

[7] Kemeni Dzh., Snell Dzh., Konechnye tsepi Markova, Nauka, M., 1970 | MR

[8] Maksimov Yu. I., “O tsepyakh Markova, svyazannykh s dvoichnymi registrami sdviga so sluchainymi elementami”, Trudy po diskretnoi matematike, v. 1, Nauchnoe izd-vo TVP, M., 1997, 203–220

[9] Tikhomirova M. I., Chistyakov V. P., “O dvukh statistikakh tipa khi-kvadrat, postroennykh po chastotam sostoyanii slozhnoi tsepi Markova”, Diskretnaya matematika, 15:2 (2003), 149–159 | DOI | Zbl

[10] Kharin Yu. S., Petlitskii A. I., “Tsep Markova $s$-go poryadka s $r$ chastichnymi svyazyami i statisticheskie vyvody o ee parametrakh”, Diskretnaya matematika, 19:2 (2007), 109–130 | DOI | Zbl

[11] Maksimov Yu. I., “Skhema Bernulli s alterniruyuschimi vstavkami”, Trudy po diskretnoi matematike, v. 2, Nauchnoe izd-vo TVP, M., 1998, 233–229