A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors
Matematičeskie voprosy kriptografii, Tome 7 (2016), pp. 67-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the number of solutions of random inclusion over a finite field that differ from a reference vector by no more than a specified number of coordinates. We find conditions on the growth of vector dimensions under which the number of solutions close to some reference vectors are asymptotically independent and their distributions converge to the Poisson distributions.
@article{MVK_2016_7_a4,
     author = {V. A. Kopytcev},
     title = {A multivariate {Poisson} theorem for the number of solutions of random inclusions close to given vectors},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/}
}
TY  - JOUR
AU  - V. A. Kopytcev
TI  - A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 67
EP  - 80
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/
LA  - ru
ID  - MVK_2016_7_a4
ER  - 
%0 Journal Article
%A V. A. Kopytcev
%T A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors
%J Matematičeskie voprosy kriptografii
%D 2016
%P 67-80
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/
%G ru
%F MVK_2016_7_a4
V. A. Kopytcev. A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors. Matematičeskie voprosy kriptografii, Tome 7 (2016), pp. 67-80. http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/

[1] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl

[2] Kopyttsev V. A., Mikhailov V. G., “Predelnye teoremy puassonovskogo tipa dlya chisla reshenii obobschennykh lineinykh vklyuchenii”, Diskretnaya matematika, 24:3 (2012), 103–121 | DOI

[3] Kopyttsev V. A., “Mnogomernaya teorema Puassona dlya chisel reshenii, blizkikh k zadannym vektoram, u sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 19:4 (2007), 3–22 | DOI | MR | Zbl

[4] Mikhailov V. G., “Skhodimost k protsessu s nezavisimymi prirascheniyami v skheme narastayuschikh summ zavisimykh sluchainykh velichin”, Matem. sb., 94 (1974), 283–299

[5] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikl. i promyshl. matem., 10:3 (2003), 571–578 | MR