Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2016_7_a4, author = {V. A. Kopytcev}, title = {A multivariate {Poisson} theorem for the number of solutions of random inclusions close to given vectors}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {67--80}, publisher = {mathdoc}, volume = {7}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/} }
TY - JOUR AU - V. A. Kopytcev TI - A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors JO - Matematičeskie voprosy kriptografii PY - 2016 SP - 67 EP - 80 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/ LA - ru ID - MVK_2016_7_a4 ER -
V. A. Kopytcev. A multivariate Poisson theorem for the number of solutions of random inclusions close to given vectors. Matematičeskie voprosy kriptografii, Tome 7 (2016), pp. 67-80. http://geodesic.mathdoc.fr/item/MVK_2016_7_a4/
[1] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl
[2] Kopyttsev V. A., Mikhailov V. G., “Predelnye teoremy puassonovskogo tipa dlya chisla reshenii obobschennykh lineinykh vklyuchenii”, Diskretnaya matematika, 24:3 (2012), 103–121 | DOI
[3] Kopyttsev V. A., “Mnogomernaya teorema Puassona dlya chisel reshenii, blizkikh k zadannym vektoram, u sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 19:4 (2007), 3–22 | DOI | MR | Zbl
[4] Mikhailov V. G., “Skhodimost k protsessu s nezavisimymi prirascheniyami v skheme narastayuschikh summ zavisimykh sluchainykh velichin”, Matem. sb., 94 (1974), 283–299
[5] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikl. i promyshl. matem., 10:3 (2003), 571–578 | MR