On bent-functions on the group~$\mathbb Z_{p^n}$
Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 127-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a bent-function on the group $\mathbb Z_{p^n}$ ($p$ prime) exists only if $n=2$ for $p=2$ or $n=1,2$ for $p>2$.
@article{MVK_2015_6_a6,
     author = {A. B. Shishkov},
     title = {On bent-functions on the group~$\mathbb Z_{p^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/}
}
TY  - JOUR
AU  - A. B. Shishkov
TI  - On bent-functions on the group~$\mathbb Z_{p^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 127
EP  - 138
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/
LA  - ru
ID  - MVK_2015_6_a6
ER  - 
%0 Journal Article
%A A. B. Shishkov
%T On bent-functions on the group~$\mathbb Z_{p^n}$
%J Matematičeskie voprosy kriptografii
%D 2015
%P 127-138
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/
%G ru
%F MVK_2015_6_a6
A. B. Shishkov. On bent-functions on the group~$\mathbb Z_{p^n}$. Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 127-138. http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/

[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskret. matem., 6:3 (1994), 50–60 | MR | Zbl

[2] Kertis Ch., Rainer I., Teoriya predstavleniik onechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR

[3] Leng S., Algebraicheskie chisla, Mir, M., 1966, 230 pp. | MR

[4] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskret. matem., 14:1 (2002), 99–113 | DOI | MR | Zbl

[5] Solodovnikov V. I., “O sovpadenii klassa bent-funktsii s klassom funktsii, minimalno blizkikh k lineinym”, Probl. diskretn. matem., 2012, no. 3, 25–33

[6] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Acad. Publ., Saarbrucken, Germany, 2011, 180 pp.

[7] Cavior S., “Exponential sums related to polynomials over $\mathrm{GF}(p)$”, Proc. Amer. Math. Soc., 15 (1964), 175–178 | MR | Zbl

[8] Gluck D., “A note on permutation polynomials and finite geometries”, Discrete Mathematics, 80 (1990), 97–100 | DOI | MR | Zbl

[9] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their properties”, J. Combin. Theory Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[10] Nyberg K., “Construction of bent functions and difference sets”, EUROCRYPT' 90, Lect. Notes Comput. Sci., 473, 1991, 151–160 | DOI | MR | Zbl

[11] Rothaus O. S., “On “bent” functions”, J. Combin. Theory Ser. A, 20 (1976), 300–305 | DOI | MR | Zbl