On bent-functions on the group~$\mathbb Z_{p^n}$
Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 127-138

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a bent-function on the group $\mathbb Z_{p^n}$ ($p$ prime) exists only if $n=2$ for $p=2$ or $n=1,2$ for $p>2$.
@article{MVK_2015_6_a6,
     author = {A. B. Shishkov},
     title = {On bent-functions on the group~$\mathbb Z_{p^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/}
}
TY  - JOUR
AU  - A. B. Shishkov
TI  - On bent-functions on the group~$\mathbb Z_{p^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 127
EP  - 138
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/
LA  - ru
ID  - MVK_2015_6_a6
ER  - 
%0 Journal Article
%A A. B. Shishkov
%T On bent-functions on the group~$\mathbb Z_{p^n}$
%J Matematičeskie voprosy kriptografii
%D 2015
%P 127-138
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/
%G ru
%F MVK_2015_6_a6
A. B. Shishkov. On bent-functions on the group~$\mathbb Z_{p^n}$. Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 127-138. http://geodesic.mathdoc.fr/item/MVK_2015_6_a6/