Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra
Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 99-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra are investigated. For each family we consider sets of functions depending on $n$ variables. Maximal groups of invariant transformations of sets of these functions is the symmetry substitution group of binary $n$-dimensional vectors are constructed.
@article{MVK_2015_6_a5,
     author = {A. V. Tarasov},
     title = {Stabilizers of some families of {Boolean} functions constituting {Galois-closed} subalgebras of the {Schaefer} algebra},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--125},
     publisher = {mathdoc},
     volume = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_a5/}
}
TY  - JOUR
AU  - A. V. Tarasov
TI  - Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 99
EP  - 125
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_a5/
LA  - ru
ID  - MVK_2015_6_a5
ER  - 
%0 Journal Article
%A A. V. Tarasov
%T Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra
%J Matematičeskie voprosy kriptografii
%D 2015
%P 99-125
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_a5/
%G ru
%F MVK_2015_6_a5
A. V. Tarasov. Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra. Matematičeskie voprosy kriptografii, Tome 6 (2015), pp. 99-125. http://geodesic.mathdoc.fr/item/MVK_2015_6_a5/

[1] Schaefer T., “Complexity of satisfiability problems”, Proc. 10 Annual ACM Symp. Theory of Comput. Machinery, 1978, 216–226 | MR | Zbl

[2] Gorshkov S. P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya sistem bulevykh uravnenii”, Obozr. prikl. promyshl. matem., 2:3 (1995), 325–398

[3] Gizunov S. A., Nosov V. A., “O klassifikatsii vsekh bulevykh funktsii chetyrekh peremennykh po klassam Shefera”, Obozr. prikl. promyshl. matem., 2:3 (1995), 440–467

[4] Gorshkov S. P., Tarasov A. V., “O maksimalnykh gruppakh invariantnykh preobrazovanii multiaffinnykh, biyunktivnykh, slabo polozhitelnykh i slabo otritsatelnykh bulevykh funktsii”, Diskretnaya matematika, 21:2 (2009), 94–101 | DOI | MR | Zbl

[5] Litvinenko V. S., Tarasov A. V., “Klassy Shefera, klassy Posta i sootvetstviya Galua”, Matematicheskie voprosy kriptografii, 6:1 (2015), 81–107

[6] Gorshkov S. P., “O peresecheniyakh klassov multiaffinnykh, biyunktivnykh, slabo polozhitelnykh i slabo otritsatelnykh bulevykh funktsii”, Obozr. prikl. promyshl. matem., 4:2 (1997), 238–259

[7] Creighnou N., Khanna S., Sudan M., Complexity classifications of Boolean constraint satisfaction problems, SIAM Press, Philadelphia, USA, 2001 | MR

[8] Tarasov A. V., “Obobschenie kriteriya biyunktivnosti Shefera”, Diskretnaya matematika, 24:2 (2012), 92–99 | DOI | MR

[9] Bondarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya klassov Posta”, Kibernetika, 3, 1969, 1–10

[10] Marchenkov S. S., “Invarianty klassov Posta”, Fundam. i prikl. matem., 4:4 (1998), 1385–1404 | MR | Zbl

[11] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2001, 126 pp. | MR