Orbital derivatives on residue rings. Part~I. General properties
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 99-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings $f\colon H\to F$, where $H$ and $F$ are Abelian groups, a definition of the $t^{th}$-order orbital derivative is introduced. The definition is based on structures of orbits of subgroups of $H$. Properties of the $t^{th}$-order orbital derivative on the residue ring $\mathbb Z_{2^n}$ are described.
@article{MVK_2014_5_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Orbital derivatives on residue rings. {Part~I.} {General} properties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--127},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Orbital derivatives on residue rings. Part~I. General properties
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 99
EP  - 127
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/
LA  - ru
ID  - MVK_2014_5_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Orbital derivatives on residue rings. Part~I. General properties
%J Matematičeskie voprosy kriptografii
%D 2014
%P 99-127
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/
%G ru
%F MVK_2014_5_a5
B. A. Pogorelov; M. A. Pudovkina. Orbital derivatives on residue rings. Part~I. General properties. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 99-127. http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/

[1] Lai X., “Higher order derivatives and differential cryptanalysis”, Communications and Cryptography, Kluwer Academic Publishers, 1994, 227–233 | DOI | Zbl

[2] Aumasson J.-P., Kaasper E., Knudsen L. R., Matusiewicz K., Odegard R., Peyrin T., Schlaffer M., “Distinguishers for the compression function and output transformation of Hamsi-256”, Lect. Notes Comput. Sci., 6168, 2010, 87–103 | DOI

[3] Boura C., Canteaut A., De Canniere C., “Higher-order differential properties of Keccak and Luffa”, Lect. Notes Comput. Sci., 6733, 2011, 252–269 | DOI

[4] Knudsen L. R., “Truncated and higher order differentials”, Lect. Notes Comput. Sci., 1008, 1995, 196–211 | DOI | Zbl

[5] Moriai S., Shimoyama T., Kaneko T., “Higher order differential attack of a CAST cipher”, Lect. Notes Comput. Sci., 1372, 1998, 17–31 | DOI | MR

[6] Canteaut A., Videnau M., “Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis”, Lect. Notes Comput. Sci., 2332, 2002, 518–533 | DOI | MR | Zbl

[7] Markov D. A., Ischislenie konechnykh raznostei, 2 izd., Odessa, 1910

[8] Gelfond A. O., Ischislenie konechnykh raznostei, Moskva, 1967 | MR

[9] Berezin I. S, Zhidkov N. P., Metody vychislenii, v. 1, 2, 3-e izd., Moskva, 1966 | MR

[10] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[11] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 22–33

[12] Diskretnaya matematika, Entsiklopediya, Nauchnoe izdatelstvo “Bolshaya Rossiiskaya entsiklopediya”, M., 2004

[13] Iwata T., Kurosawa K., “Probabilistic higher order differential attack and higher order bent functions”, Lect. Notes Comput. Sci., 1716, 1999, 62–74 | DOI | MR | Zbl

[14] Wagner D., “A generalized birthday problem”, Lect. Notes Comput. Sci., 2442, 2002, 288–304 | DOI | MR

[15] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody v kriptografii, Lan, S-Pb., 2011 | Zbl

[16] Knut D., Iskusstvo programmirovaniya, v. 2, Poluchislennye metody, OOO “I. D. Vilyams”, M., 2007