Orbital derivatives on residue rings. Part~I. General properties
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 99-127

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings $f\colon H\to F$, where $H$ and $F$ are Abelian groups, a definition of the $t^{th}$-order orbital derivative is introduced. The definition is based on structures of orbits of subgroups of $H$. Properties of the $t^{th}$-order orbital derivative on the residue ring $\mathbb Z_{2^n}$ are described.
@article{MVK_2014_5_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Orbital derivatives on residue rings. {Part~I.} {General} properties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--127},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Orbital derivatives on residue rings. Part~I. General properties
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 99
EP  - 127
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/
LA  - ru
ID  - MVK_2014_5_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Orbital derivatives on residue rings. Part~I. General properties
%J Matematičeskie voprosy kriptografii
%D 2014
%P 99-127
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/
%G ru
%F MVK_2014_5_a5
B. A. Pogorelov; M. A. Pudovkina. Orbital derivatives on residue rings. Part~I. General properties. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 99-127. http://geodesic.mathdoc.fr/item/MVK_2014_5_a5/