Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 73-97

Voir la notice de l'article provenant de la source Math-Net.Ru

For linear combinations of coordinate functions of random Boolean mapping a local limit theorem for the distribution of subsets of weights of submappings is improved. Also a local limit theorem for subsets of their spectral coefficients is proved. By means of these theorems we obtain upper and lower asymptotic estimates for numbers of correlation-immune and ($n,m,k$)-resilient Boolean mappings. Also we obtain an upper asymptotic estimate of the number of plateaued Boolean mappings.
@article{MVK_2014_5_a4,
     author = {K. N. Pankov},
     title = {Asymptotic estimates for numbers of {Boolean} mappings with given cryptographic properties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {73--97},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a4/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 73
EP  - 97
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a4/
LA  - ru
ID  - MVK_2014_5_a4
ER  - 
%0 Journal Article
%A K. N. Pankov
%T Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties
%J Matematičeskie voprosy kriptografii
%D 2014
%P 73-97
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a4/
%G ru
%F MVK_2014_5_a4
K. N. Pankov. Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 73-97. http://geodesic.mathdoc.fr/item/MVK_2014_5_a4/