Statistical estimation of the significant arguments set of the binary vector-function with corrupted values
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 41-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be the set of significant arguments of the unknown binary vector-function with the random uniformly distributed arguments and corrupted values. Algorithm for constructing the estimate $\Theta^*$ of $\Theta$ based on statistical estimates of function spectrum is proposed. For some function classes (particularly, for vectorial bent-functions and bijective mappings) we get asymptotic bounds of the data size sufficient for the successful work of the algorithm, i.e. $\mathbf P\{\Theta^*=\Theta\}\to1$.
@article{MVK_2014_5_a2,
     author = {O. V. Denisov},
     title = {Statistical estimation of the significant arguments set of the binary vector-function with corrupted values},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {41--61},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - Statistical estimation of the significant arguments set of the binary vector-function with corrupted values
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 41
EP  - 61
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/
LA  - ru
ID  - MVK_2014_5_a2
ER  - 
%0 Journal Article
%A O. V. Denisov
%T Statistical estimation of the significant arguments set of the binary vector-function with corrupted values
%J Matematičeskie voprosy kriptografii
%D 2014
%P 41-61
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/
%G ru
%F MVK_2014_5_a2
O. V. Denisov. Statistical estimation of the significant arguments set of the binary vector-function with corrupted values. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 41-61. http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/