Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2014_5_a2, author = {O. V. Denisov}, title = {Statistical estimation of the significant arguments set of the binary vector-function with corrupted values}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {41--61}, publisher = {mathdoc}, volume = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/} }
TY - JOUR AU - O. V. Denisov TI - Statistical estimation of the significant arguments set of the binary vector-function with corrupted values JO - Matematičeskie voprosy kriptografii PY - 2014 SP - 41 EP - 61 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/ LA - ru ID - MVK_2014_5_a2 ER -
O. V. Denisov. Statistical estimation of the significant arguments set of the binary vector-function with corrupted values. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 41-61. http://geodesic.mathdoc.fr/item/MVK_2014_5_a2/
[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl
[2] Arenbaev N. K., “O neravenstvakh dlya sluchainykh vektorov”, Teoriya veroyatn. i primen., 22:3 (1977), 585–589 | MR | Zbl
[3] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999, 472 pp. | MR
[4] Prokhorov Yu. V., “O rasprostranenii neravenstv S. N. Bernshteina na mnogomernyi sluchai”, Teoriya veroyatn. i primen., 13:2 (1968), 266–274 | MR | Zbl
[5] Tokareva N. N., “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1(3), 15–37
[6] Nyberg K., “Perfect nonlinear $S$-boxes”, Advances in cryptology Eurocrypt-1991, LNCS, 547, 1991, 378–386 | MR | Zbl
[7] Titsworth R. C., Correlation properties of cyclic sequences, Thesis for the degree of doctor of Philosophy, California Institute of Technology, 1962, 244 pp. available at http://thesis.library.caltech.edu