A construction of new classes of filter generators without equivalent states
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 17-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We find conditions ensuring the nonexistence of equivalent states for the filter generator consisting of a shift register with a reducible characteristic polynomial over residue ring (Galois ring) and a filter function. An algorithm for recovering the maximum period LRS over residue ring by the linear combination of polynomials of the highest coordinate sequence symbols is suggested. The review of previous results is given.
@article{MVK_2014_5_a1,
     author = {D. N. Bylkov},
     title = {A construction of new classes of filter generators without equivalent states},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {17--39},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a1/}
}
TY  - JOUR
AU  - D. N. Bylkov
TI  - A construction of new classes of filter generators without equivalent states
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 17
EP  - 39
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a1/
LA  - ru
ID  - MVK_2014_5_a1
ER  - 
%0 Journal Article
%A D. N. Bylkov
%T A construction of new classes of filter generators without equivalent states
%J Matematičeskie voprosy kriptografii
%D 2014
%P 17-39
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a1/
%G ru
%F MVK_2014_5_a1
D. N. Bylkov. A construction of new classes of filter generators without equivalent states. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 17-39. http://geodesic.mathdoc.fr/item/MVK_2014_5_a1/