Nonlinear permutations recursively generated over the Galois ring of characteristic~4
Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 5-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of nonlinear permutations $\pi_F$ of a space $\mathrm{GF}(2^r)^m$ of any dimension $m\ge3$ is constructed. Each permutation $\pi_F$ is recursively generated by the characteristic polynomial $F(x)$ over the Galois ring $\mathrm{GR}(2^{2r},4)$. Results of the paper by A. A. Nechaev and the author are generalized to an arbitrary Galois ring of characteristic 4.
@article{MVK_2014_5_a0,
     author = {A. V. Abornev},
     title = {Nonlinear permutations recursively generated over the {Galois} ring of characteristic~4},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_a0/}
}
TY  - JOUR
AU  - A. V. Abornev
TI  - Nonlinear permutations recursively generated over the Galois ring of characteristic~4
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 5
EP  - 15
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_a0/
LA  - ru
ID  - MVK_2014_5_a0
ER  - 
%0 Journal Article
%A A. V. Abornev
%T Nonlinear permutations recursively generated over the Galois ring of characteristic~4
%J Matematičeskie voprosy kriptografii
%D 2014
%P 5-15
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_a0/
%G ru
%F MVK_2014_5_a0
A. V. Abornev. Nonlinear permutations recursively generated over the Galois ring of characteristic~4. Matematičeskie voprosy kriptografii, Tome 5 (2014), pp. 5-15. http://geodesic.mathdoc.fr/item/MVK_2014_5_a0/

[1] Abornev A. V., “Postroenie podstanovok s ispolzovaniem razryadno-podstanovochnykh preobrazovanii modulya nad koltsom Galua kharakteristiki 4”, Prikl. diskr. matem., 2014, no. 1, 9–19

[2] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl

[3] Nechaev A. A., Abornev A. V., “Nonlinear permutations on a space over a finite field induced by linear transformations of a module over a Galois ring”, Matematicheskie voprosy kriptografii, 4:2 (2013), 81–100

[4] Nikonov V. G., Sarantsev A. V., “Metody kompaktnoi realizatsii biektivnykh otobrazhenii, zadannykh regulyarnymi sistemami odnotipnykh bulevykh funktsii”, Vestnik RUDN, Ser. Prikl. i kompyut. matem., 2:1 (2003), 84–95