Difference specification of substitutions and partitions in a residue ring
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 127-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The difference specification of a substitution $s\in S_n$ may be defined as an unordered multiset of differences $\Delta_i\equiv(s(i)-i)(\operatorname{mod}n)$, $1\le i\le n$; the number of unappeared differences is called a deficit of substitution. We find formulas for the number of all possible difference specifications and for the number of difference specifications for substitutions with given deficit. Under some conditions exact and asymptotic distributions of the deficit are found.
@article{MVK_2014_5_1_a6,
     author = {V. N. Sachkov},
     title = {Difference specification of substitutions and partitions in a~residue ring},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {127--150},
     year = {2014},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Difference specification of substitutions and partitions in a residue ring
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 127
EP  - 150
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/
LA  - ru
ID  - MVK_2014_5_1_a6
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Difference specification of substitutions and partitions in a residue ring
%J Matematičeskie voprosy kriptografii
%D 2014
%P 127-150
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/
%G ru
%F MVK_2014_5_1_a6
V. N. Sachkov. Difference specification of substitutions and partitions in a residue ring. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 127-150. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/

[1] Hall M., “A combinatorial problem on abelian groups”, Proc. Amer. Soc., 3:4 (1952), 584–587 | DOI | MR | Zbl

[2] Brauer A., Brauer R., Hopf H., “Über die Irreduzibilität einiger spezieller Klassen von Polynomen”, Jber. Deutsch. Math.-Verein., 35 (1926), 99–112 | Zbl

[3] Riordan J., “Enumerations for permutations in difference form”, Proc. Amer. Math. Soc., 13:1 (1962), 107–110 | DOI | MR | Zbl

[4] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6, Fizmatlit, M., 2002, 165–183

[5] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977