Difference specification of substitutions and partitions in a residue ring
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 127-150
Cet article a éte moissonné depuis la source Math-Net.Ru
The difference specification of a substitution $s\in S_n$ may be defined as an unordered multiset of differences $\Delta_i\equiv(s(i)-i)(\operatorname{mod}n)$, $1\le i\le n$; the number of unappeared differences is called a deficit of substitution. We find formulas for the number of all possible difference specifications and for the number of difference specifications for substitutions with given deficit. Under some conditions exact and asymptotic distributions of the deficit are found.
@article{MVK_2014_5_1_a6,
author = {V. N. Sachkov},
title = {Difference specification of substitutions and partitions in a~residue ring},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {127--150},
year = {2014},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/}
}
V. N. Sachkov. Difference specification of substitutions and partitions in a residue ring. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 127-150. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a6/
[1] Hall M., “A combinatorial problem on abelian groups”, Proc. Amer. Soc., 3:4 (1952), 584–587 | DOI | MR | Zbl
[2] Brauer A., Brauer R., Hopf H., “Über die Irreduzibilität einiger spezieller Klassen von Polynomen”, Jber. Deutsch. Math.-Verein., 35 (1926), 99–112 | Zbl
[3] Riordan J., “Enumerations for permutations in difference form”, Proc. Amer. Math. Soc., 13:1 (1962), 107–110 | DOI | MR | Zbl
[4] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6, Fizmatlit, M., 2002, 165–183
[5] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977