Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2013_4_a4, author = {F. M. Malyshev}, title = {Four infinite series of $k$-configurations}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {65--75}, publisher = {mathdoc}, volume = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/} }
F. M. Malyshev. Four infinite series of $k$-configurations. Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 65-75. http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/
[1] Malyshev F. M., “Tri semeistva 5-konfiguratsii”, Matematicheskie voprosy kriptografii, 4:3 (2013), 83–97
[2] Malyshev F. M., Tarakanov V. E., “O $(v,k)$-konfiguratsiyakh”, Matematicheskii sbornik, 192:9 (2001), 85–108 | DOI | MR | Zbl
[3] Trishin A. E., “Primery $(v,k)$-matrits”, Vestnik IKSI. Ceriya K (M., Akademiya FSB Rossii), 2003, Cpetsialnyi vypusk, posvyaschennyi 100-letiyu akademika A. N. Kolmogorova, 179–185
[4] Trishin A. E., “Klassifikatsiya tsirkulyantnykh $(v,5)$-matrits”, Obozr. prikl. i prom. matem., 11:2 (2004), 258–259
[5] Frolov A. A., “Opisanie abelevykh $(v,5)$-grupp matrits”, Obozr. prikl. i prom. matem., 11:2 (2004), 262–263
[6] Frolov A. A., “Klass involyutivnykh neabelevykh $(v,5)$-grupp matrits”, Obozr. prikl. i prom. matem., 12:1 (2005)
[7] Trishin A. E., Frolov A. A., “Sposob postroeniya $(v,k)$-matrits pri pomoschi funktsii sled”, Obozr. prikl. i prom. matem., 13 (2006), 362–364
[8] Frolov A. A., “Novoe semeistvo involyutivnykh $(v,5)$-grupp”, Obozr. prikl. i prom. matem., 14:3 (2007), 569–570
[9] Frolov A. A., “Klassifikatsiya nerazlozhimykh abelevykh $(v,5)$-grupp”, Diskretnaya matematika, 20:1 (2008), 94–108 | DOI | MR | Zbl
[10] Malyshev F. M., Frolov A. A., “Klassifikatsiya $(v,3)$-konfiguratsii”, Matematicheskie zametki, 91:5 (2012), 741–749 | DOI
[11] Malyshev F. M., Frolov A. A., “Klassifikatsionnye teoremy dlya $(v,k)$-konfiguratsii”, Trudy konferentsii MaBIT–2010, sektsiya “Matematicheskie problemy informatsionnoi bezopasnosti”, MTsNMO, M., 2011, 61–65