Four infinite series of $k$-configurations
Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an approach to the construction of $k$-configurations on the countable (or finite) set $X$. If $X$ is finite then $k$-configuration is a family of subsets in $X$ with the incidence matrix $L\in GL(|X|,2)$ such that $L$ and $L^{-1}$ have exactly $k$ ones in all rows and columns.
@article{MVK_2013_4_a4,
     author = {F. M. Malyshev},
     title = {Four infinite series of $k$-configurations},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Four infinite series of $k$-configurations
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 65
EP  - 75
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/
LA  - ru
ID  - MVK_2013_4_a4
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Four infinite series of $k$-configurations
%J Matematičeskie voprosy kriptografii
%D 2013
%P 65-75
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/
%G ru
%F MVK_2013_4_a4
F. M. Malyshev. Four infinite series of $k$-configurations. Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 65-75. http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/

[1] Malyshev F. M., “Tri semeistva 5-konfiguratsii”, Matematicheskie voprosy kriptografii, 4:3 (2013), 83–97

[2] Malyshev F. M., Tarakanov V. E., “O $(v,k)$-konfiguratsiyakh”, Matematicheskii sbornik, 192:9 (2001), 85–108 | DOI | MR | Zbl

[3] Trishin A. E., “Primery $(v,k)$-matrits”, Vestnik IKSI. Ceriya K (M., Akademiya FSB Rossii), 2003, Cpetsialnyi vypusk, posvyaschennyi 100-letiyu akademika A. N. Kolmogorova, 179–185

[4] Trishin A. E., “Klassifikatsiya tsirkulyantnykh $(v,5)$-matrits”, Obozr. prikl. i prom. matem., 11:2 (2004), 258–259

[5] Frolov A. A., “Opisanie abelevykh $(v,5)$-grupp matrits”, Obozr. prikl. i prom. matem., 11:2 (2004), 262–263

[6] Frolov A. A., “Klass involyutivnykh neabelevykh $(v,5)$-grupp matrits”, Obozr. prikl. i prom. matem., 12:1 (2005)

[7] Trishin A. E., Frolov A. A., “Sposob postroeniya $(v,k)$-matrits pri pomoschi funktsii sled”, Obozr. prikl. i prom. matem., 13 (2006), 362–364

[8] Frolov A. A., “Novoe semeistvo involyutivnykh $(v,5)$-grupp”, Obozr. prikl. i prom. matem., 14:3 (2007), 569–570

[9] Frolov A. A., “Klassifikatsiya nerazlozhimykh abelevykh $(v,5)$-grupp”, Diskretnaya matematika, 20:1 (2008), 94–108 | DOI | MR | Zbl

[10] Malyshev F. M., Frolov A. A., “Klassifikatsiya $(v,3)$-konfiguratsii”, Matematicheskie zametki, 91:5 (2012), 741–749 | DOI

[11] Malyshev F. M., Frolov A. A., “Klassifikatsionnye teoremy dlya $(v,k)$-konfiguratsii”, Trudy konferentsii MaBIT–2010, sektsiya “Matematicheskie problemy informatsionnoi bezopasnosti”, MTsNMO, M., 2011, 61–65