Four infinite series of $k$-configurations
Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 65-75

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an approach to the construction of $k$-configurations on the countable (or finite) set $X$. If $X$ is finite then $k$-configuration is a family of subsets in $X$ with the incidence matrix $L\in GL(|X|,2)$ such that $L$ and $L^{-1}$ have exactly $k$ ones in all rows and columns.
@article{MVK_2013_4_a4,
     author = {F. M. Malyshev},
     title = {Four infinite series of $k$-configurations},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Four infinite series of $k$-configurations
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 65
EP  - 75
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/
LA  - ru
ID  - MVK_2013_4_a4
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Four infinite series of $k$-configurations
%J Matematičeskie voprosy kriptografii
%D 2013
%P 65-75
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/
%G ru
%F MVK_2013_4_a4
F. M. Malyshev. Four infinite series of $k$-configurations. Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 65-75. http://geodesic.mathdoc.fr/item/MVK_2013_4_a4/